document.write( "Question 85495: An account executive receives a base salary plus a commission. On $20,000 in monthly sales, the account executive receives $1800. On $50,000 in monthly sales, the account executive receives $3000.
\n" );
document.write( "A.) Determine a linear function that will yield the compensation of the sales executive for a given amount of monthly sales.
\n" );
document.write( "B.) Use this model to determine the account executive's compensation for $85,000 in monthly sales. \n" );
document.write( "
Algebra.Com's Answer #61723 by rajagopalan(174) You can put this solution on YOUR website! ****** \n" ); document.write( "Sales.......Amt Recd \n" ); document.write( "$50,000 ....$3000 \n" ); document.write( "$20,000 ....$1800..Subtracting \n" ); document.write( "$30,000 ....$1200 \n" ); document.write( "For an increase in sale of 30,000 he gets a commn of 1200 \n" ); document.write( "which is 1200/30000=4% \n" ); document.write( "Commission percent=4 \n" ); document.write( "So in 20,000 sales commission = 20000x0.04=800 \n" ); document.write( "Amount earned=1800 \n" ); document.write( "commission=800 \n" ); document.write( "So Basic Salary=1800-800=1000 \n" ); document.write( "Now the eqn for amount received by executive=1000+(total sale(S)x0.04) \n" ); document.write( "The model is \n" ); document.write( "A=0.04S+100 \n" ); document.write( "where A= amount Received by Executive, S=Total Sales \n" ); document.write( "**** \n" ); document.write( "Using the model \n" ); document.write( "For 85000$ sale, \n" ); document.write( "we get A=(0.04x8500)+1000 \n" ); document.write( "=3400+1000 \n" ); document.write( "=4400 \n" ); document.write( "Answer $4400.\r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |