document.write( "Question 998980: Using the logical rules of replacement and implication, I was supposed to solve this logical proof. and am now very lost:
\n" );
document.write( "(Key: . being used for conjunction
\n" );
document.write( "+ being used for disjunction
\n" );
document.write( "> being used for implication)\r
\n" );
document.write( "\n" );
document.write( "Premise 1: W+P
\n" );
document.write( "Premise 2:~(W.S)
\n" );
document.write( "Premise 3: ~(S.P)
\n" );
document.write( "Conclusion~(S.U)\r
\n" );
document.write( "\n" );
document.write( "I have tried everything! Please help. \n" );
document.write( "
Algebra.Com's Answer #616710 by Edwin McCravy(20054)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( "Premise 1: W+P\r\n" ); document.write( "Premise 2:~(W.S)\r\n" ); document.write( "Premise 3: ~(S.P)\r\n" ); document.write( " Conclusion~(S.U) \r\n" ); document.write( "\r\n" ); document.write( "4. ~W+~S Premise 2, DeMorgan's law\r\n" ); document.write( "5. ~S+~W 4, commutativity\r\n" ); document.write( "6. ~S+~P Premise 3, DeMorgan's law \r\n" ); document.write( "7. (~S+~W).(~S+~P) 5,6, conjunction \r\n" ); document.write( "8. ~S+(~W.~P) 7, distribution\r\n" ); document.write( "9. ~S+~(W+P) 8, DeMorgan's law (replacement)\r\n" ); document.write( "10. ~(W+P)+~S 9, commutativity\r\n" ); document.write( "11. ~~(W+P) Premise 1, double negation\r\n" ); document.write( "12. ~S 10,11, disjunctive syllogism \r\n" ); document.write( "13. ~S+~U 12, addition\r\n" ); document.write( "14. ~(S.U) 13, DeMorgan's law\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |