document.write( "Question 998820: Hi, I need to find the first and second derivative of: f(x)=8x[4^(-x)]\r
\n" );
document.write( "\n" );
document.write( "and the answer in the book is:\r
\n" );
document.write( "\n" );
document.write( "f'(x)=-8[4^(-x)](x ln 4-1)\r
\n" );
document.write( "\n" );
document.write( "and the second one is:\r
\n" );
document.write( "\n" );
document.write( "f''(x)=8[4^(-x)] ln 4(x ln 4-2)\r
\n" );
document.write( "\n" );
document.write( "can someone show me the steps to get to those derivatives please?\r
\n" );
document.write( "\n" );
document.write( "Thank you!
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #616580 by rothauserc(4718) You can put this solution on YOUR website! f(x) = 8x[4^(-x)] = 8x / (4^x) \n" ); document.write( "note that the calculus division rule will be used, that is \n" ); document.write( "first derivative of (numerator(N) / denominator(D)) = \n" ); document.write( "(N' * D)-(N * D') / (D^2) \n" ); document.write( "****************************************************************************** \n" ); document.write( "derivative of denominator calculation \n" ); document.write( "let y = 4^x \n" ); document.write( "take natural log of both sides of = \n" ); document.write( "ln y = x * ln(4) \n" ); document.write( "then use implicit differentiation \n" ); document.write( "(1/y) * y' = ln(4) \n" ); document.write( "y' = y * ln(4) \n" ); document.write( "note that y = 4^x, then \n" ); document.write( "y' = (4^x) * ln(4) \n" ); document.write( "****************************************************************************** \n" ); document.write( "derivative of numerator calculation \n" ); document.write( "y = 8x \n" ); document.write( "y' = 8 \n" ); document.write( "***************************************************************************** \n" ); document.write( "f'(x) = (8 * (4^x)) - (8x * (4^x) * ln(4) ) / (4^2x) \n" ); document.write( "simplify this (see the following steps) \n" ); document.write( "f'(x) = (8 - 8x * ln(4)) / (4^x) \n" ); document.write( "here we have divided the numerator by (4^x) leaving (4^x) in the D \n" ); document.write( "f'(x) = (-8 * (x*ln(4)-1) / (4^x) \n" ); document.write( "factored -8, therefore \n" ); document.write( "f'(x) = -8 * [4^(-x)] * (x*ln(4)-1) \n" ); document.write( "****************************************************************************** \n" ); document.write( "start with f'(x) = (8 - 8x * ln(4)) / (4^x), then take first derivative of this using calculus division rule and implicit derivative of D \n" ); document.write( "****************************************************************************** \n" ); document.write( "derivative of denominator calculation \n" ); document.write( "let y = 4^x \n" ); document.write( "y' = (4^x) * ln(4) \n" ); document.write( "***************************************************************************** \n" ); document.write( "derivative of numerator calculation \n" ); document.write( "y = 8 - 8x * ln(4) \n" ); document.write( "note that derivative of a constant is 0 \n" ); document.write( "y' = 0 -8*ln(4) \n" ); document.write( "y' = -8*ln(4) \n" ); document.write( "***************************************************************************** \n" ); document.write( "f''(x) = (-(8*ln(4))*(4^x)) - ((8 - 8x * ln(4))*(4^x) * ln(4)) / (4^2x) \n" ); document.write( "f''(x) = -8*ln(4)*4^x -8*ln(4)*4^x +8x*ln^2(4)*4^x / 4^2x \n" ); document.write( "f''(x) = -8*ln(4) -8*ln(4) + 8x*ln^2(4) / 4^x \n" ); document.write( "f''(x) = 8x*ln^2(4) -16*ln(4) / 4^x \n" ); document.write( "f''(x) = 8 * [4^(-x)] * ln(4) * (x*ln(4) - 2) \r \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |