document.write( "Question 997835: The sum of the digits of a two digit number is 7. When the digits are reversed the value of the number increased by 27. Find the number
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #615763 by fractalier(6550)![]() ![]() You can put this solution on YOUR website! Call the tens digit x and the ones digit y. \n" ); document.write( "Thus x + y = 7 \n" ); document.write( "Originally the value is 10x + y. \n" ); document.write( "Reversed its value is 10y + x. This is 27 more than the original, so \n" ); document.write( "10y + x = 10x + y + 27 \n" ); document.write( "or \n" ); document.write( "-9x + 9y = 27 \n" ); document.write( "or \n" ); document.write( "-x + y = 3 now add the first equation and get \n" ); document.write( "x + y = 7 \n" ); document.write( "2y = 10 \n" ); document.write( "y = 5 \n" ); document.write( "x = 2 \n" ); document.write( "The original number was 25. \n" ); document.write( " \n" ); document.write( " |