document.write( "Question 996837: Rotate polygon ABCD 90 degree counterclockwise about the origin.
\n" ); document.write( "A(-4,2)
\n" ); document.write( "B(1,3)
\n" ); document.write( "C(-2,1)
\n" ); document.write( "D(-3,-2)
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #615156 by Theo(13342)\"\" \"About 
You can put this solution on YOUR website!
here's a reference on rotations.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "http://www.regentsprep.org/regents/math/geometry/gt4/Rotate.htm\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "basically, a rotation of 90 degrees counterclockwise results in (x,y) becoming (-y,x).\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "(-4,2) becomes (-2,-4)
\n" ); document.write( "(1,3) becomes (-3,1)
\n" ); document.write( "(-2,1) becomes (-1,-2)
\n" ); document.write( "(-3,-2) becomes (2,-3)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "if you look at each of those points individually, and extend a line from each point to the origin, you will see that they form a 90 degree angle.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "here's what the original and the transformed point A looks like.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"$$$\"\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );