document.write( "Question 996070: If we neglect air resistance, then the range of a ball (or any projectile) shot at an angle θ with respect to the x axis and with an initial velocity v0, is given by \r
\n" ); document.write( "\n" ); document.write( "R(θ)=v_0^2/g sin(2θ) for 0 ≤ θ ≤ π/2 \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "where g is the acceleration due to gravity (9.8 meters per second per second). \r
\n" ); document.write( "\n" ); document.write( "For what value of θ is the maximum range attained? (Note that the answer is numerical, not symbolic.) \r
\n" ); document.write( "\n" ); document.write( "θ =\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Please explain
\n" ); document.write( "Thank you
\n" ); document.write( "

Algebra.Com's Answer #614643 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
R(theta) = (v0^2/g)*sin(2*theta)
\n" ); document.write( "R ' (theta) = (v0^2/g)*2*cos(2*theta)
\n" ); document.write( "0 = (v0^2/g)*2*cos(2*theta)
\n" ); document.write( "cos(2*theta) = 0
\n" ); document.write( "2*theta = arccos(0)
\n" ); document.write( "2*theta = pi/2 + 2pi*n or 2*theta = -pi/2 + 2pi*n
\n" ); document.write( "theta = pi/4 + pi*n or theta = -pi/4 + 2pi*n\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Ignore the theta = -pi/4 + 2pi*n portion since the first part is negative pushing it out of the interval [0,pi/2]\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Only one value of n will make theta = pi/4 + pi*n in the interval [0,pi/2]. This value of n is n = 0\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "If n = 0, then theta = pi/4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Final Answer: pi/4 = 0.78539816339744 (decimal value is approximate)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "pi/4 radians = 45 degrees
\n" ); document.write( "This is halfway between 0 and 90 degrees
\n" ); document.write( "
\n" );