document.write( "Question 994081: Every now and then even a good diamond cutter has a problem and the diamond breaks. for one cutter, the rate of breaks is .1%.
\n" ); document.write( "If this cutter works on 75 stones, what is the probability that he breaks 2 or more?\r
\n" ); document.write( "\n" ); document.write( "I got 0.997420452.
\n" ); document.write( "

Algebra.Com's Answer #613282 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
we use the binomial probability formula
\n" ); document.write( "Probability(P) = (nCk) * p^k * q^(n-k) where nCk is the combination of n items taken k at a time
\n" ); document.write( "********************************************************************
\n" ); document.write( "P(k > or = 2) = 1 - ( P ( k = 0 ) + P ( k = 1 ) )
\n" ); document.write( "p = .001, q = .999, n = 75
\n" ); document.write( "P ( k = 0 ) = 0.927708673390002
\n" ); document.write( "P ( k = 1 ) = 0.0696477983025527
\n" ); document.write( "P(k > or = 2) = 1 - (0.927708673390002 + 0.0696477983025527)
\n" ); document.write( "P(k > or = 2) = 0.002643528
\n" ); document.write( "
\n" );