document.write( "Question 992194: A person standing close to the edge on the top of a 270-foot building throws a baseball vertically upward. The quadratic equation\r
\n" ); document.write( "\n" ); document.write( " h = -16 t^2 + 160 t + 270\r
\n" ); document.write( "\n" ); document.write( "models the ball's height \, h \, above the ground in feet, t seconds after it was thrown.\r
\n" ); document.write( "\n" ); document.write( "How high is the ball after 5 seconds?\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "How many seconds does it take until the ball finally hits the ground? Round to the nearest tenth of a second.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #611819 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
A person standing close to the edge on the top of a 270-foot building throws a baseball vertically upward. The quadratic equation
\n" ); document.write( " h = -16 t^2 + 160 t + 270
\n" ); document.write( " models the ball's height h above the ground in feet, t seconds after it was thrown.
\n" ); document.write( " How high is the ball after 5 seconds?
\n" ); document.write( "----
\n" ); document.write( "h(t) = -16t^2 + 160t + 270
\n" ); document.write( "Find h(5) = sub 5 for t.
\n" ); document.write( "h(5) is 670 feet.
\n" ); document.write( "---------------------
\n" ); document.write( " How many seconds does it take until the ball finally hits the ground? Round to the nearest tenth of a second.
\n" ); document.write( "h(t) = -16t^2 + 160t + 270
\n" ); document.write( "-16t^2 + 160t + 270 = 0
\n" ); document.write( "Solve for t. Use the positive solution.
\n" ); document.write( "-----
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"-16x%5E2%2B160x%2B270+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28160%29%5E2-4%2A-16%2A270=42880\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=42880 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28-160%2B-sqrt%28+42880+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28160%29%2Bsqrt%28+42880+%29%29%2F2%5C-16+=+-1.47108955277239\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28160%29-sqrt%28+42880+%29%29%2F2%5C-16+=+11.4710895527724\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"-16x%5E2%2B160x%2B270\" can be factored:
\n" ); document.write( " \"-16x%5E2%2B160x%2B270+=+%28x--1.47108955277239%29%2A%28x-11.4710895527724%29\"
\n" ); document.write( " Again, the answer is: -1.47108955277239, 11.4710895527724.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+-16%2Ax%5E2%2B160%2Ax%2B270+%29\"

\n" ); document.write( "\n" ); document.write( "==================================================
\n" ); document.write( "t = 11.5 seconds.
\n" ); document.write( "Maybe you didn't use the nearest 10th ?
\n" ); document.write( "
\n" );