document.write( "Question 991271: Find the domain and range of the quadratic equation f(x)=x^2-8x-9 \n" ); document.write( "
Algebra.Com's Answer #611132 by ikleyn(52798)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Hello,
\n" ); document.write( "your question is incorrect.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The correct question is:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        Find the domain and range of the quadratic function   f(x)=x^2-8x-9.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "An equation has no domain.  The term  \"domain\" is not defined for equations. \r
\n" ); document.write( "\n" ); document.write( "It is defined for functions.\r
\n" ); document.write( "\n" ); document.write( "It is not applicable for equations.  It is applicable for functions.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The same is for range.  It is for functions,  not for equations.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "OK.  Now I am ready to answer this question:\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        Find the domain and range of the quadratic function  f(x)=x^2-8x-9.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "1)  The domain of a quadratic function is the entire number line,  i.e  the set of all real numbers. \r
\n" ); document.write( "\n" ); document.write( "      It is true for any quadratic function.  Particularly,  it is true for the given function.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "2)  The range of a quadratic function is stretched from its minimal value to the positive infinity,  if the parabola is  U-shaped  (has positive coefficient at \"x%5E2\", \r
\n" ); document.write( "\n" ); document.write( "      as it is in your case). \r
\n" ); document.write( "\n" ); document.write( "      If the parabola is bottom-up  (the quadratic function has negative coefficient at  \"x%5E2\"),  then its range is stretched from its maximal value to the negative infinity.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "      So,  in your case we need to find the minimal value of the quadratic function.  For a quadratic function  f(x) =  \"ax%5E2+%2B+bx+%2B+c\"  the minimum is reached at  x = -\"b%2F%282a%29\" \r
\n" ); document.write( "\n" ); document.write( "      and is equal to f(-\"%28b%2F%282a%29%29\").  In your case   -\"b%2F%282a%29\" = \"8%2F2\" = 4  and  f(4) = \"4%5E2+-8%2A4+-+9\" = 16 - 32 - 9 = -25.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "      Therefore,  the range of your function is semi-infinite segment   [-25, \"infinity\"). \r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );