document.write( "Question 990624: Find the domain and range of the function:
\n" ); document.write( "f(x)=x^2+3x+10/x^2+6x+5
\n" ); document.write( "

Algebra.Com's Answer #610644 by ikleyn(52790)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Find the domain and range of the function: \"f%28x%29\" = \"%28x%5E2%2B3x%2B10%29%2F%28x%5E2%2B6x%2B5%29\".
\n" ); document.write( "-----------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The denominator is a quadratic polynomial.  It has the roots  -1  and  -5.  (You can find them using the quadratic formula or the Viete's theorem). \r
\n" ); document.write( "\n" ); document.write( "At these values of  x  the denominator is zero,  so the function is not determined in these points.  Therefore the domain is the entire number line except  x=-1  and  x=-5.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The numerator is again a quadratic polynomial,  and it is always positive,  since its discriminant  d = b^2 - 4ac = 3^2 -4*1*10 = 9 - 40 = -31  is negative. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The denominator is negative inside the interval  (-5, -1)  and positive outside the segment  [-5, -1].\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "From this, we can conclude that the given rational function is negative inside the interval  (-5, -1)  and is positive outside the segment  [-5, -1].\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Besides of it,  the given rational function tends to   -\"infinity\"  when  x ---> (-5)+  and  x ---> (-1)-. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "At the same time the given rational function tends to   \"infinity\" when  x ---> (-5)-  and  x ---> (-1)+. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The plot of the function is shown in the  Figure  below. \r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( " \r\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "\n" ); document.write( "\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "              Figure. \r
\n" ); document.write( "\n" ); document.write( "
\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It is predictable that the positive branches of the given rational function go from   +\"infinity\"  to  1  when   x ---> \"infinity\"  and   x ---> -\"infinity\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thus the range includes the semi-infinite segment  [1, \"infinity\").\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It also includes the semi-infinite segment  [alpha, -\"infinity\") for some negative  \"alpha\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "To find the value of  \"alpha\",  we need to calculate the derivative  f'(x)  of the function and solve the equation  f'(x) = 0. \r
\n" ); document.write( "\n" ); document.write( "It will be,  actually,  the equation for the numerator of the derivative,  which would be again the quadratic polynomial. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "But it is just too long way for me.  Would you complete the solution and find the value of  \"alpha\" ?\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );