document.write( "Question 987140: A candy store two types of candy. Type A costs $6 per pound and Type B costs $10 per pound. Sarah wants to make a mixture of these weighing 10 pounds that costs $9 per pound. How many more pounds of Type B will she need in the mixture than Type A? \n" ); document.write( "
Algebra.Com's Answer #607915 by macston(5194)![]() ![]() You can put this solution on YOUR website! . \n" ); document.write( "A=amount of Type A; B=amount of Type B \n" ); document.write( ". \n" ); document.write( "A+B=10 lbs \n" ); document.write( "A=10lbs-B \n" ); document.write( ". \n" ); document.write( "$6A+$10B=$9(10) \n" ); document.write( "$6(10-B)+$10B=$90 \n" ); document.write( "$60-$6B+$10B=$90 \n" ); document.write( "$4B=$30 \n" ); document.write( "B=7.5 She will need 7.5 pounds of Type B. \n" ); document.write( "A=10lbs-B=10lbs-7.5lbs=2.5lbs She will need 2.5 pounds of Type A. \n" ); document.write( ". \n" ); document.write( "7.5 pounds-2.5 pounds=5 pounds \n" ); document.write( "ANSWER: She will need 5 more pounds of Type B than Type A. \n" ); document.write( ". \n" ); document.write( "CHECK: \n" ); document.write( "$6(2.5)+$10(7.5)=$9(10) \n" ); document.write( "$15+$75=$90 \n" ); document.write( "$90=$90 \n" ); document.write( " |