document.write( "Question 985639: Factor the polynomial P(x). Then solve the equation P(x)=0.
\n" );
document.write( "1.P(x)=x^3+4x^2+x-6
\n" );
document.write( "2.P(x)=x^3-6x^2-x+6
\n" );
document.write( "3.P(x)=x^3-x^2-x+1
\n" );
document.write( "4.P(x)=2x^3-3x^2-3x+2 \n" );
document.write( "
Algebra.Com's Answer #606472 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "Factor the polynomial P(x). Then solve the equation P(x)=0.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1. P(x) = \n" ); document.write( "2. P(x) = \n" ); document.write( "3. P(x) = \n" ); document.write( "4. P(x) = \n" ); document.write( "----------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "1. P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " The integer 1 is the root. Indeed, P(1) = \n" ); document.write( "\n" ); document.write( "It means that the binomial (x-1) divides the polynomial P(x): P(x) = (x-1)*Q(x), where Q(x) is a quadratic polynomial. (See the Remainder Theorem in the lesson \r \n" ); document.write( "\n" ); document.write( "Divisibility of polynomial f(x) by binomial x-a in this site). \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "If you make the long division, you will get Q(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The quadratic polynomial Q(x) has the roots -2 and -3: Q(-2) = 0 and Q(-3) = 0.\r \n" ); document.write( "\n" ); document.write( "You can use the quadratic formula to find the roots (see the lesson Introduction into Quadratic Equations in this site) or \r \n" ); document.write( "\n" ); document.write( "the Vieta's Theorem (see the lesson Solving quadratic equations without quadratic formula). You also can check it directly. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "This means that the binomials (x+2) and (x+3) divide the polynomial Q(x), so Q(x) = (x+2)*(x+3). \r \n" ); document.write( "\n" ); document.write( "You also can check this factorization immediately. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "It implies that the polynomial P(x) has the factorization P(x) = (x-1)*(x+2)*(x+3). \r \n" ); document.write( "\n" ); document.write( "Hence, its roots are 1, -2 and -3.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "2. P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Re-group: P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The roots of the polynomial P(x) are 6, 1 and -1. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "3. P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Re-group: P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The roots of the polynomial P(x) are 1 (multiplicity 2), and -1. \r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "4. P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "One root is 2: P(2) = 0 (check it yourself). \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, P(x) is divided by (x-2): P(x) = (x-2)*Q(x), where Q(x) is a quadratic polynomial. (By the same reason as in the n.1 above). \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Long division gives Q(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hence, P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The quadratic polynomial \n" ); document.write( "\n" ); document.write( "So, Q(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Thus P(x) = \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The polynomial P(x) has the roots 2, -1 and \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |