document.write( "Question 985340: A triangular park has sides 120 m,50 m and 80 m. Find the area of triangular park. A wire is rotated around the park leaving 3 m area. If cost of 1 m wire is 20 rs, then find the cost of total wire to be used. \n" ); document.write( "
Algebra.Com's Answer #606196 by ikleyn(52781)![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "I will answer only the first part of the question regarding the area of the park (the area of the given triangle). \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use the Heron's formula for the triangle area:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "named after the ancient Greek mathematician Heron. \r \n" ); document.write( "\n" ); document.write( "Here \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "In our case a = 120 m, b= 50 m, and c = 80 m. Hence, the semi-perimeter is \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "and the area of the given triangle is \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "For the Heron's formula see the lessons \r \n" ); document.write( "\n" ); document.write( " - Formulas for area of a triangle,\r \n" ); document.write( "\n" ); document.write( " - Proof of the Heron's formula for the area of a triangle and \r \n" ); document.write( "\n" ); document.write( " - One more proof of the Heron's formula for the area of a triangle \r \n" ); document.write( "\n" ); document.write( "in this site.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |