document.write( "Question 984855: Find the points on inflection and discuss the concavity of the function:
\n" );
document.write( " f(x)=x sqrt (x+8) \n" );
document.write( "
Algebra.Com's Answer #605878 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! f(x) = x * sqrt(x+8) \n" ); document.write( "we will take the first derivative of f(x) and set it equal to 0 to find the points of inflection \n" ); document.write( "**************************************************************************** \n" ); document.write( "to find the first derivative, we will use the product rule, namely \n" ); document.write( "d(uv)/dx = u'v + v'u \n" ); document.write( "let u = x and v = (x+8)^(1/2), then \n" ); document.write( "u' = 1 \n" ); document.write( "v' = (1/2) * (x+8)^(-1/2) \n" ); document.write( "d(uv)/dx = (x+8)^(1/2) + (x/2) * (x+2)^(-1/2) \n" ); document.write( "d(uv)/dx = f'(x) = (3x + 16) / (2*(x+8)^(1/2)) \n" ); document.write( "**************************************************************************** \n" ); document.write( "the point of inflection is \n" ); document.write( "(3x + 16) / (2*(x+8)^(1/2)) = 0 \n" ); document.write( "3x + 16 = 0 \n" ); document.write( "x = -16 / 3 \n" ); document.write( "**************************************************************************** \n" ); document.write( "the x axis intercepts for f(x) are \n" ); document.write( "f(x) = 0 = x * sqrt(x+8) \n" ); document.write( "x = 0 and x = -8 \n" ); document.write( "**************************************************************************** \n" ); document.write( "In order to discuss concavity of f(x), we calculate the second derivative of f(x), we do this by starting with f'(x) and taking its derivative \n" ); document.write( "f'(x) = (3x + 16) / (2*(x+8)^(1/2)) \n" ); document.write( "to take this derivative, we use the quotient rule, namely \n" ); document.write( "d(u/v)/dx = (u'v - uv') / v^2 \n" ); document.write( "u = (3x + 16) \n" ); document.write( "v = (2 *(x+8)^(-1/2)) \n" ); document.write( "u' = 3 \n" ); document.write( "****************************************************************************** \n" ); document.write( "for v' we use the product rule \n" ); document.write( "u = 2 \n" ); document.write( "v = (x+8)^(-1/2) \n" ); document.write( "v' = 0 + (2 * (x+8)^(-3/2) / -2 \n" ); document.write( "v' = -(x+8)^(-3/2) \n" ); document.write( "***************************************************************************** \n" ); document.write( "d(u/v)/dx = f''(x) = (3*(2 *(x+8)^(-1/2))) + ((3x + 16)*(x+8)^(-3/2)) / (4*(x+8)) \n" ); document.write( "f''(x) = (3x + 32) / (4*(x+8)^(3/2)) \n" ); document.write( "to discuss concavity, we evaluate f''(x) on the interval (-8, +infinity) \n" ); document.write( "note that for x < -8, f(x) is imaginary \n" ); document.write( "***************************************************************************** \n" ); document.write( "from inspection we see that f''(x) is positive on (-8, infinity) which means that f(x) is concave up on that interval, here is the graph of f(x) \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |