\r\n" );
document.write( "What is the vertex form of y=(3x+1)(x-2)\r\n" );
document.write( "\r\n" );
document.write( "Foil it out\r\n" );
document.write( "\r\n" );
document.write( "y = 3x² - 6x + x - 2\r\n" );
document.write( "\r\n" );
document.write( "y = 3x² - 5x - 2\r\n" );
document.write( "\r\n" );
document.write( "Factor the coefficient of x², which is 3,\r\n" );
document.write( "out of the first two terms only: Not to \r\n" );
document.write( "take 3 out of -5x you divide -5 by 3 and get\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "y = 3(x² -
x) - 2\r\n" );
document.write( "\r\n" );
document.write( "Take one-half the coefficient of x:\r\n" );
document.write( "\r\n" );
document.write( "
·
=
\r\n" );
document.write( "\r\n" );
document.write( "Then square what you get:\r\n" );
document.write( "\r\n" );
document.write( "
=
\r\n" );
document.write( "\r\n" );
document.write( "Add that and then subtract it inside the parentheses:\r\n" );
document.write( "\r\n" );
document.write( "y = 3(x² -
x +
-
) - 2\r\n" );
document.write( "\r\n" );
document.write( "Change the parentheses to brackets so we can factor \r\n" );
document.write( "and put parentheses inside:\r\n" );
document.write( "\r\n" );
document.write( "y = 3[x² -
x +
-
] - 2\r\n" );
document.write( "\r\n" );
document.write( "Factor the first three terms inside the brackets:\r\n" );
document.write( "\r\n" );
document.write( "y = 3[(x -
)(x -
) -
] - 2 \r\n" );
document.write( "\r\n" );
document.write( "Write (x -
)(x -
) as (x -
)²\r\n" );
document.write( "\r\n" );
document.write( "y = 3[(x -
)² -
] - 2\r\n" );
document.write( "\r\n" );
document.write( "Now remove the brackets by distributing the 3 into the \r\n" );
document.write( "bracket, leaving the (x -
)² intact.\r\n" );
document.write( "\r\n" );
document.write( "y = 3(x -
)² - 3·
- 2\r\n" );
document.write( "\r\n" );
document.write( "Simplify the last two terms:\r\n" );
document.write( "\r\n" );
document.write( "y = 3(x -
)² -
- 2 \r\n" );
document.write( "\r\n" );
document.write( "y = 3(x -
)² -
-
\r\n" );
document.write( "\r\n" );
document.write( "y = 3(x -
)² -
\r\n" );
document.write( "\r\n" );
document.write( "Compare that to:\r\n" );
document.write( "\r\n" );
document.write( "y = a(x - h)² + k\r\n" );
document.write( "\r\n" );
document.write( "and equate like parts of the two equations:\r\n" );
document.write( "\r\n" );
document.write( "a = 3,\r\n" );
document.write( "\r\n" );
document.write( "-h =
, so h =
\r\n" );
document.write( "\r\n" );
document.write( "k =
\r\n" );
document.write( "\r\n" );
document.write( "So the vertex is the point (
,
), or\r\n" );
document.write( "\r\n" );
document.write( "like (.8, 4.1)\r\n" );
document.write( "\r\n" );
document.write( "or a mixed fraction is better for graphing:\r\n" );
document.write( "\r\n" );
document.write( "The vertex is the point (
, -(4
)\r\n" );
document.write( "\r\n" );
document.write( "Nasty fractions, indeed, but nasty fractions don't bother \r\n" );
document.write( "computers, so why should they bother us humans? :-)\r\n" );
document.write( "But if we can get some more points we can plot the graph.\r\n" );
document.write( "The graph will be a parabola and we can observe if that\r\n" );
document.write( "point really and truly is the vertex: \r\n" );
document.write( "\r\n" );
document.write( "We can get the y-intercept by going back to the original\r\n" );
document.write( "equation y=(3x+1)(x-2) and substituting x=0. We get\r\n" );
document.write( "y = (3·0+1)(0-2) = (0+1)(-2) = (1)(-2) = -2\r\n" );
document.write( "\r\n" );
document.write( "So we plot those two points and a bunch of others, we get\r\n" );
document.write( "this graph. \r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( " \r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "