document.write( "Question 983910: Find A, B, and C such that (x-1)/(x+1)(x-2)^2 = A/(x+1) + B/(x-2) + C/(x-2)^2 \n" ); document.write( "
Algebra.Com's Answer #604700 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! (x-1)/(x+1)(x-2)^2 = A/(x+1) + B/(x-2) + C/(x-2)^2 \n" ); document.write( "Multiply everything out with the common denominator of (x+1)(x-2)^2.\r \n" ); document.write( "\n" ); document.write( "Then (x-1)/(x+1)(x-2)^2 = A(x-2)^2 + B(x+1)(x-2) + C((x+1)\r \n" ); document.write( "\n" ); document.write( "Now make one of those parentheses on the right =0. \n" ); document.write( "Let x=2 \n" ); document.write( "Then C(x+1)=x-1, if x=2 ;;; A and B both =0. \n" ); document.write( "3C=1 ; c=(1/3)\r \n" ); document.write( "\n" ); document.write( "Let x=-1 \n" ); document.write( "-2=9A \n" ); document.write( "A=(-2/9) \n" ); document.write( "; \n" ); document.write( "x=0 \n" ); document.write( "-1=4A-2B+C \n" ); document.write( "but -1=(-8/9)-2B+1/3 \n" ); document.write( "-1=(-5/9)-2B \n" ); document.write( "2B=4/9 \n" ); document.write( "B=2/9 \n" ); document.write( "; \n" ); document.write( "can check with a different x. Try 5 \n" ); document.write( "4=9*(-2/9)+18(2/9)+6(1/3)=-2+4+2=4, so it checks.\r \n" ); document.write( "\n" ); document.write( "; \n" ); document.write( "It is -2/9(x+1) + 2/9(x-2)+ 1/3(x-2)^2\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |