document.write( "Question 982640: A speed boat can travel at 16km/h in still water. A 60km course takes 2 hours longer against the current than with it. Find the speed of the current. \n" ); document.write( "
| Algebra.Com's Answer #603442 by mananth(16946)     You can put this solution on YOUR website! let x be the rate of current\r \n" ); document.write( "\n" ); document.write( "downstream speed = (16+x) \n" ); document.write( "upstream speed = (16-x)\r \n" ); document.write( "\n" ); document.write( "t=d/r\r \n" ); document.write( "\n" ); document.write( "time upstream - time downstream = 2 hours\r \n" ); document.write( "\n" ); document.write( "distance = 60\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "60/(16-x) -60/(16+x) =2\r \n" ); document.write( "\n" ); document.write( "60(16+x) - 60(16-x)=2(16+x)(16-x)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "960+60x -960+60x=2(256-x^2)\r \n" ); document.write( "\n" ); document.write( "120x+2x^2-512=0\r \n" ); document.write( "\n" ); document.write( "2x^2+120x-512=0\r \n" ); document.write( "\n" ); document.write( "/2 \n" ); document.write( "x^2+60x-256=0\r \n" ); document.write( "\n" ); document.write( "x^2+64x-4x-256=0\r \n" ); document.write( "\n" ); document.write( "x(x+64)-4(x+64)=0\r \n" ); document.write( "\n" ); document.write( "(x-4)(x+64)=0\r \n" ); document.write( "\n" ); document.write( "x=4 the positive value \n" ); document.write( " |