We observe the leading term -2x6. The degree is the exponent
\n" );
document.write( "6, an even number. That tells us that the extreme left and right behaviors
\n" );
document.write( "are the same. The negative coefficient -2 tells us that both extreme
\n" );
document.write( "left and right behaviors are downward. Thus the function has a maximum
\n" );
document.write( "value.
\n" );
document.write( "
\n" );
document.write( "What is the value? What is the corresponding value of x?
\n" );
document.write( "\r\n" );
document.write( "We can only answer those in reverse order. So we answer first:\r\n" );
document.write( "
\n" );
document.write( "\"At what value of x does this maximum value occur?\"
\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We find the derivative\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Set y' = 0\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "We divide thru by the constant -12\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Factor the sum of two cubes:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "The real roots are x=0, x=-2 (the third factor yields only complex roots.)\r\n" );
document.write( "\r\n" );
document.write( "We do a first derivative test of x=0 \r\n" );
document.write( "\r\n" );
document.write( "intervals | x < -2 | -2 < x < 0 | x > 0\r\n" );
document.write( "----------------------------------------------\r\n" );
document.write( "test value t | -3 | 1 | 3\r\n" );
document.write( "sign of y'(t) | + | - | -\r\n" );
document.write( "direction | upward | downward | downward\r\n" );
document.write( " (incr.) (decr.) (decr.)\r\n" );
document.write( " \r\n" );
document.write( "At -2 there is a change from increasing (upward) to decreasing (downward) \r\n" );
document.write( "Therefore there is a relative maximum pt. at x = -2.\r\n" );
document.write( "At 0 there is no change from decreasing (downward), thus a horizontal\r\n" );
document.write( "inflection point at x=0.\r\n" );
document.write( "\r\n" );
document.write( "There are no other critical values of the derivative, so\r\n" );
document.write( "the relative maximum pt. at x = -2, is an absolute maximum point.\r\n" );
document.write( "\r\n" );
document.write( "Now we answer this question:\r\n" );
document.write( "
\n" );
document.write( "What is the maximum value reached at x = -2.
\n" );
document.write( "\r\n" );
document.write( "We substitute in the original equation:\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "So the maximum value is 10. Observe the maximum point (-2,10),\r\n" );
document.write( "and also the horizontal inflection point at (0,-118)\r\n" );
document.write( "\r\n" );
document.write( "
\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" );
document.write( "