document.write( "Question 980644: V&P
\n" );
document.write( "~M&N
\n" );
document.write( "(VvS)>(R>M)
\n" );
document.write( "(VvP)>(X>R)
\n" );
document.write( "/~X \n" );
document.write( "
Algebra.Com's Answer #602275 by Edwin McCravy(20055)![]() ![]() You can put this solution on YOUR website! \r\n" ); document.write( " 1. V&P\r\n" ); document.write( " 2. ~M&N\r\n" ); document.write( " 3. (VvS)>(R>M)\r\n" ); document.write( " 4. (VvP)>(X>R)\r\n" ); document.write( " /~X\r\n" ); document.write( "\r\n" ); document.write( " 5. ~(VvS)v(R>M) 3, Material Implication \r\n" ); document.write( " 6. (~V&~S)v(R>M) 5, DeMorgan\r\n" ); document.write( " 7. [~Vv(R>M)]&[~Sv(R>M)] 6, Distribution\r\n" ); document.write( " 8. ~Vv(R>M) 7, Simplification\r\n" ); document.write( " 9. V>(R>M) 8, Material Implication\r\n" ); document.write( "10. V 1, Simplification\r\n" ); document.write( "11. R>M 9,10, Modus Ponens\r\n" ); document.write( "12. ~(VvP)v(X>R) 3, Material Implication\r\n" ); document.write( "13. (~V&~P)v(X>R) 12, DeMorgan\r\n" ); document.write( "14. [~Vv(X>R)]&[~Pv(X>R)] 13, Distribution\r\n" ); document.write( "15. ~Vv(X>R) 14, Simplification\r\n" ); document.write( "16. V>(X>R) 15, Material Implication\r\n" ); document.write( "17. X>R 16,10, Modus Ponens\r\n" ); document.write( "18. ~M>~R 11, Transposition\r\n" ); document.write( "19. ~M 2, Simplification\r\n" ); document.write( "20. ~R 18,19, Modus Ponens\r\n" ); document.write( "21. ~R>~X 17, Transposition\r\n" ); document.write( "22. ~X 21,20, Modus Ponens\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |