document.write( "Question 980644: V&P
\n" ); document.write( "~M&N
\n" ); document.write( "(VvS)>(R>M)
\n" ); document.write( "(VvP)>(X>R)
\n" ); document.write( "/~X
\n" ); document.write( "

Algebra.Com's Answer #602275 by Edwin McCravy(20055)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( " 1.  V&P\r\n" );
document.write( " 2.  ~M&N\r\n" );
document.write( " 3.  (VvS)>(R>M)\r\n" );
document.write( " 4.  (VvP)>(X>R)\r\n" );
document.write( "                   /~X\r\n" );
document.write( "\r\n" );
document.write( " 5.  ~(VvS)v(R>M)           3, Material Implication \r\n" );
document.write( " 6.  (~V&~S)v(R>M)          5, DeMorgan\r\n" );
document.write( " 7.  [~Vv(R>M)]&[~Sv(R>M)]  6, Distribution\r\n" );
document.write( " 8.  ~Vv(R>M)               7, Simplification\r\n" );
document.write( " 9.  V>(R>M)                8, Material Implication\r\n" );
document.write( "10.  V                      1, Simplification\r\n" );
document.write( "11.  R>M                 9,10, Modus Ponens\r\n" );
document.write( "12. ~(VvP)v(X>R)            3, Material Implication\r\n" );
document.write( "13. (~V&~P)v(X>R)          12, DeMorgan\r\n" );
document.write( "14. [~Vv(X>R)]&[~Pv(X>R)]  13, Distribution\r\n" );
document.write( "15. ~Vv(X>R)               14, Simplification\r\n" );
document.write( "16. V>(X>R)                15, Material Implication\r\n" );
document.write( "17. X>R                 16,10, Modus Ponens\r\n" );
document.write( "18. ~M>~R                  11, Transposition\r\n" );
document.write( "19. ~M                      2, Simplification\r\n" );
document.write( "20. ~R                  18,19, Modus Ponens\r\n" );
document.write( "21. ~R>~X                  17, Transposition\r\n" );
document.write( "22. ~X                  21,20, Modus Ponens\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\n" ); document.write( "
\n" );