document.write( "Question 981083: Population 1 had a standard deviation of 8 and population 2 had a standard deviation of 10. In a random sample of 30 units from Population 1, the mean was 50. In a random sample of 40 units from Population 2, the mean was 48. Perform a test of hypothesis to investigate whether Population 1 has a greater mean compared to Population 2. Use a significance level of 0.05. Use z as test statistic. \n" ); document.write( "
Algebra.Com's Answer #602113 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
Given:
\n" ); document.write( "n1 = 30
\n" ); document.write( "xbar1 = 50
\n" ); document.write( "sigma1 = 8\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "n2 = 40
\n" ); document.write( "xbar2 = 48
\n" ); document.write( "sigma2 = 10\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Hypothesis:
\n" ); document.write( "H0: mu1 <= mu2
\n" ); document.write( "H1: mu1 > mu2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Right tailed test. Reject H0 if the test statistic z is larger than critical value\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Standard Error:
\n" ); document.write( "SE = sqrt(((sigma1)^2)/(n1)+((sigma2)^2)/(n2))
\n" ); document.write( "SE = sqrt((8^2)/(30)+(10^2)/(40))
\n" ); document.write( "SE = 2.1525179\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Test Statistic:
\n" ); document.write( "z=((xbar1-xbar2)-(mu1-mu2))/(SE)
\n" ); document.write( "z=((50-48)-0)/(2.1525179)
\n" ); document.write( "z=0.9291444
\n" ); document.write( "z=0.93\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "When alpha = 0.05, the critical value is 1.645 for a right tailed test.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The test statistic is NOT larger than the critical value. So we fail to reject the null hypothesis. The p-value (0.1764) is larger than alpha. This also tells us to fail to reject the null.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Decision: Fail to reject H0. Effectively the null hypothesis is \"accepted\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Interpretation: Population 1 does not have a greater mean than population 2.
\n" ); document.write( "
\n" );