document.write( "Question 981083: Population 1 had a standard deviation of 8 and population 2 had a standard deviation of 10. In a random sample of 30 units from Population 1, the mean was 50. In a random sample of 40 units from Population 2, the mean was 48. Perform a test of hypothesis to investigate whether Population 1 has a greater mean compared to Population 2. Use a significance level of 0.05. Use z as test statistic. \n" ); document.write( "
Algebra.Com's Answer #602113 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! Given: \n" ); document.write( "n1 = 30 \n" ); document.write( "xbar1 = 50 \n" ); document.write( "sigma1 = 8\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "n2 = 40 \n" ); document.write( "xbar2 = 48 \n" ); document.write( "sigma2 = 10\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "-------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Hypothesis: \n" ); document.write( "H0: mu1 <= mu2 \n" ); document.write( "H1: mu1 > mu2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Right tailed test. Reject H0 if the test statistic z is larger than critical value\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Standard Error: \n" ); document.write( "SE = sqrt(((sigma1)^2)/(n1)+((sigma2)^2)/(n2)) \n" ); document.write( "SE = sqrt((8^2)/(30)+(10^2)/(40)) \n" ); document.write( "SE = 2.1525179\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Test Statistic: \n" ); document.write( "z=((xbar1-xbar2)-(mu1-mu2))/(SE) \n" ); document.write( "z=((50-48)-0)/(2.1525179) \n" ); document.write( "z=0.9291444 \n" ); document.write( "z=0.93\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "When alpha = 0.05, the critical value is 1.645 for a right tailed test.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The test statistic is NOT larger than the critical value. So we fail to reject the null hypothesis. The p-value (0.1764) is larger than alpha. This also tells us to fail to reject the null.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Decision: Fail to reject H0. Effectively the null hypothesis is \"accepted\"\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Interpretation: Population 1 does not have a greater mean than population 2. \n" ); document.write( " |