document.write( "Question 980616: Use the given degree of confidence and sample data to construct a confidence interval for the population mean μ. Assume
\n" );
document.write( "that the population has a normal distribution.
\n" );
document.write( " n = 10, x = 8.1, s = 4.8, 95% confidence \n" );
document.write( "
Algebra.Com's Answer #601746 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! xbar = 8.1 \n" ); document.write( "n = 10 \n" ); document.write( "s = 4.8 \n" ); document.write( "Since n = 10 makes n > 30 false, and because sigma is not known, we use a T distribution. The critical t value is t = 2.262 (at 95% confidence, df = n-1 = 10-1 = 9). Use a table to find this\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The confidence interval is of the form (L,U) where L is the lower limit and U is the upper limit.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Lower Limit (L): \n" ); document.write( "L = xbar - t*s/sqrt(n) \n" ); document.write( "L = 8.1 - 2.262*4.8/sqrt(10) \n" ); document.write( "L = 8.1 - 2.262*1.51789327688082 \n" ); document.write( "L = 8.1 - 3.43347459230442 \n" ); document.write( "L = 4.66652540769558 \n" ); document.write( "L = 4.67\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Upper Limit (U): \n" ); document.write( "U = xbar + t*s/sqrt(n) \n" ); document.write( "U = 8.1 + 2.262*4.8/sqrt(10) \n" ); document.write( "U = 8.1 + 2.262*1.51789327688082 \n" ); document.write( "U = 8.1 + 3.43347459230442 \n" ); document.write( "U = 11.5334745923044 \n" ); document.write( "U = 11.53\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The 95% confidence interval for mu is (L,U) = (4.67, 11.53)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note: The confidence interval can also be stated as 4.67 < mu < 11.53. Some books will use plus/minus notation and say |