document.write( "Question 980552: Solve this equation by completing the square.
\n" ); document.write( "3x^2 - 4x = -2
\n" ); document.write( "

Algebra.Com's Answer #601670 by richwmiller(17219)\"\" \"About 
You can put this solution on YOUR website!
\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: COMPLETING THE SQUARE solver for quadratics
Read this lesson on completing the square by prince_abubu, if you do not know how to complete the square.
Let's convert \"3x%5E2%2B-4x%2B2=0\" to standard form by dividing both sides by 3:
\n" ); document.write( "We have: \"1x%5E2%2B-1.33333333333333x%2B0.666666666666667=0\". \n" ); document.write( "What we want to do now is to change this equation to a complete square \"%28x%2Bsomenumber%29%5E2+%2B+othernumber\". How can we find out values of somenumber and othernumber that would make it work?
\n" ); document.write( "Look at \"%28x%2Bsomenumber%29%5E2\": \"%28x%2Bsomenumber%29%5E2+=+x%5E2%2B2%2Asomenumber%2Ax+%2B+somenumber%5E2\". Since the coefficient in our equation \"1x%5E2%2Bhighlight_red%28+-1.33333333333333%29+%2A+x%2B0.666666666666667=0\" that goes in front of x is -1.33333333333333, we know that -1.33333333333333=2*somenumber, or \"somenumber+=+-1.33333333333333%2F2\". So, we know that our equation can be rewritten as \"%28x%2B-1.33333333333333%2F2%29%5E2+%2B+othernumber\", and we do not yet know the other number.
\n" ); document.write( "We are almost there. Finding the other number is simply a matter of not making too many mistakes. We need to find 'other number' such that \"%28x%2B-1.33333333333333%2F2%29%5E2+%2B+othernumber\" is equivalent to our original equation \"1x%5E2%2B-1.33333333333333x%2Bhighlight_green%28+0.666666666666667+%29=0\".
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( " The highlighted red part must be equal to 0.666666666666667 (highlighted green part).
\n" ); document.write( "
\n" ); document.write( " \"-1.33333333333333%5E2%2F4+%2B+othernumber+=+0.666666666666667\", or \"othernumber+=+0.666666666666667--1.33333333333333%5E2%2F4+=+0.222222222222222\".
\n" ); document.write( "So, the equation converts to \"%28x%2B-1.33333333333333%2F2%29%5E2+%2B+0.222222222222222+=+0\", or \"%28x%2B-1.33333333333333%2F2%29%5E2+=+-0.222222222222222\".
\n" ); document.write( "
\n" ); document.write( " Our equation converted to a square \"%28x%2B-1.33333333333333%2F2%29%5E2\", equated to a number (-0.222222222222222).
\n" ); document.write( "
\n" ); document.write( " There is no number whose square can be negative. So, there is no solution to this equation

\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation with variable
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"3x%5E2%2B-4x%2B2+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-4%29%5E2-4%2A3%2A2=-8\".
\n" ); document.write( "
\n" ); document.write( " The discriminant -8 is less than zero. That means that there are no solutions among real numbers.

\n" ); document.write( " If you are a student of advanced school algebra and are aware about imaginary numbers, read on.

\n" ); document.write( "
\n" ); document.write( " In the field of imaginary numbers, the square root of -8 is + or - \"sqrt%28+8%29+=+2.82842712474619\".
\n" ); document.write( "
\n" ); document.write( " The solution is
\n" ); document.write( "
\n" ); document.write( " Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+3%2Ax%5E2%2B-4%2Ax%2B2+%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );