document.write( "Question 980200: Good day\r
\n" );
document.write( "\n" );
document.write( "Determine the gradient of the tangents at the given points. \r
\n" );
document.write( "\n" );
document.write( "f(x) = x² - x - 6 ....where y = -4\r
\n" );
document.write( "\n" );
document.write( "The answer is +-3
\n" );
document.write( "I just don't know how to get there \n" );
document.write( "
Algebra.Com's Answer #601390 by Cromlix(4381)![]() ![]() You can put this solution on YOUR website! hi there, \n" ); document.write( "First set up your equation: \n" ); document.write( "f(x) = x^2 - x - 6 \n" ); document.write( "where y = -4 \n" ); document.write( "Therefore, \n" ); document.write( "x^2 - x - 6 = -4 \n" ); document.write( "Collect like terms \n" ); document.write( "x^2 - x - 6 + 4 = 0 \n" ); document.write( "x^2 - x - 2 = 0 \n" ); document.write( "Factorise \n" ); document.write( "(x + 1)(x - 2)= 0 \n" ); document.write( "x + 1 = 0 \n" ); document.write( "x = -1 \n" ); document.write( "x - 2 = 0 \n" ); document.write( "x = +2 \n" ); document.write( "Differentiate: \n" ); document.write( "y = x^2 - x - 6 \n" ); document.write( "dy/dx = 2x - 1 \n" ); document.write( "Substitute the two 'x' values \n" ); document.write( "into the differentiated equation: \n" ); document.write( "...... \n" ); document.write( "2x - 1 \n" ); document.write( "(x = - 1) \n" ); document.write( "= 2(-1) - 1 \n" ); document.write( "= -2 - 1 \n" ); document.write( "= - 3 \n" ); document.write( "....... \n" ); document.write( "2x - 1 \n" ); document.write( "(x = 2) \n" ); document.write( "= 2(2) - 1 \n" ); document.write( "= 4 - 1 \n" ); document.write( "= 3 \n" ); document.write( "...... \n" ); document.write( "Therefore gradients are +-3 \n" ); document.write( "Hope this helps:-) \n" ); document.write( " |