document.write( "Question 978273: if p, q, r, and s are prime numbers and (q^3.p^2)/r^2 = s^n, what is the value of n? \n" ); document.write( "
Algebra.Com's Answer #600872 by Edwin McCravy(20054)\"\" \"About 
You can put this solution on YOUR website!
\r\n" );
document.write( "Prime factorization is unique except for the order of factors.\r\n" );
document.write( "\r\n" );
document.write( "n could only be 3 because\r\n" );
document.write( "\r\n" );
document.write( "(q^3*p^2)/r^2 = s^n\r\n" );
document.write( "\r\n" );
document.write( "then\r\n" );
document.write( "q^3*p^2= r^2*s^n\r\n" );
document.write( "\r\n" );
document.write( "There are 5 primes multiplied together on the left, so\r\n" );
document.write( "there must the same 5 primes multiplied together on the right.\r\n" );
document.write( "\r\n" );
document.write( "In fact p=r and q=s, and of course n=3.\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );