document.write( "Question 979388: The quadratic function \"f%28x%29=ax%5E2%2Bbx%2Bc\" has the following characteristics: (i) passes through the point (2,4); (ii) has a maximum value of 6 when x=4; and (iii) has a zero of \"x=4%2B2sqrt%283%29\".
\n" ); document.write( "Find the values of a,b, and c.
\n" ); document.write( "

Algebra.Com's Answer #600652 by Boreal(15235)\"\" \"About 
You can put this solution on YOUR website!
f(4)=6\r
\n" ); document.write( "\n" ); document.write( "If there is a zero at 4+2 sqrt (3), there is a zero at 4 - 2 sqrt (3)
\n" ); document.write( "a*4+b*2+c=4
\n" ); document.write( "4a+2b+c=4\r
\n" ); document.write( "\n" ); document.write( "16a+4b+c=6
\n" ); document.write( "Eliminate c
\n" ); document.write( "4a+2b+c=4
\n" ); document.write( "-16a-4b-c=-6
\n" ); document.write( "-12a-2b=-2
\n" ); document.write( "12a+2b=2
\n" ); document.write( "6a+b=1
\n" ); document.write( "But -b/2a=4, so -b=8a
\n" ); document.write( "-2a=1
\n" ); document.write( "a=(-1/2)
\n" ); document.write( "b=4
\n" ); document.write( "first equation -2+8+c=4; c=-2
\n" ); document.write( "second equation -8+16+c=6; c=-2\r
\n" ); document.write( "\n" ); document.write( "(-1/2)x^2+4x-2=f(x)
\n" ); document.write( "quadratic formula:
\n" ); document.write( "{-4 +/- sqrt (16-4)}/-1
\n" ); document.write( "roots are 4+/- sqrt (12); sqrt (12=2 sqrt (3))\r
\n" ); document.write( "\n" ); document.write( "a= -1/2
\n" ); document.write( "b=4
\n" ); document.write( "c= -2\r
\n" ); document.write( "\n" ); document.write( "\"graph%28300%2C300%2C-10%2C10%2C-10%2C10%2C%28-1%2F2%29x%5E2%2B4x-2%29\"
\n" ); document.write( "
\n" ); document.write( "
\n" );