document.write( "Question 978149: the equation for the tangent line at point(1,0) in the curve y=3x²-4x+1 is, y= ? and the area surrounded by the curve the tangen line ans the y-axis is? \n" ); document.write( "
Algebra.Com's Answer #599652 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
the equation for the tangent line at point(1,0) in the curve y=3x²-4x+1 is, y= ?
\n" ); document.write( "--------
\n" ); document.write( "y' = 6x - 4 = the slope, m
\n" ); document.write( "m = 2
\n" ); document.write( "-----------
\n" ); document.write( "y = 2(x - 1)
\n" ); document.write( "===================
\n" ); document.write( "and the area surrounded by the curve the tangen line ans the y-axis is?
\n" ); document.write( "----------
\n" ); document.write( "Find the x-ints of the parabola, the zeroes:
\n" ); document.write( "3x^2 - 4x + 1 = 0
\n" ); document.write( "(3x-1)*(x-1) = 0
\n" ); document.write( "x = 1/3, x = 1
\n" ); document.write( "--------
\n" ); document.write( "The bounded area is the triangle below the x-axis.
\n" ); document.write( "Its area = 1 sq unit.
\n" ); document.write( "-------
\n" ); document.write( "Add the area under the parabola from x = 0 to x = 1/3 is:
\n" ); document.write( "f(x) = 3x^2 - 4x + 1
\n" ); document.write( "INT = x^3 - 2x^2 + x (ignore the constant)
\n" ); document.write( "Area = INT(1/3) - INT(0)
\n" ); document.write( "= 1/27 - 2/9 + 1/3 - 0
\n" ); document.write( "= 4/27 sq units
\n" ); document.write( "--------------
\n" ); document.write( "The area from 1/3 to 1 has to be subtracted:
\n" ); document.write( "Area = INT(1) - INT(1/3)
\n" ); document.write( "= [1/27 - 2/9 + 1/3] - (1 - 2 + 1)
\n" ); document.write( "= 4/27
\n" ); document.write( "======================
\n" ); document.write( "Total area = 1 sq unit
\n" ); document.write( "================================================
\n" ); document.write( "I think the other tutor got the area for the parabola, the tangent and the x-axis. Not the y-axis.
\n" ); document.write( "
\n" ); document.write( "
\n" );