document.write( "Question 978149: the equation for the tangent line at point(1,0) in the curve y=3x²-4x+1 is, y= ? and the area surrounded by the curve the tangen line ans the y-axis is? \n" ); document.write( "
Algebra.Com's Answer #599652 by Alan3354(69443)![]() ![]() You can put this solution on YOUR website! the equation for the tangent line at point(1,0) in the curve y=3x²-4x+1 is, y= ? \n" ); document.write( "-------- \n" ); document.write( "y' = 6x - 4 = the slope, m \n" ); document.write( "m = 2 \n" ); document.write( "----------- \n" ); document.write( "y = 2(x - 1) \n" ); document.write( "=================== \n" ); document.write( "and the area surrounded by the curve the tangen line ans the y-axis is? \n" ); document.write( "---------- \n" ); document.write( "Find the x-ints of the parabola, the zeroes: \n" ); document.write( "3x^2 - 4x + 1 = 0 \n" ); document.write( "(3x-1)*(x-1) = 0 \n" ); document.write( "x = 1/3, x = 1 \n" ); document.write( "-------- \n" ); document.write( "The bounded area is the triangle below the x-axis. \n" ); document.write( "Its area = 1 sq unit. \n" ); document.write( "------- \n" ); document.write( "Add the area under the parabola from x = 0 to x = 1/3 is: \n" ); document.write( "f(x) = 3x^2 - 4x + 1 \n" ); document.write( "INT = x^3 - 2x^2 + x (ignore the constant) \n" ); document.write( "Area = INT(1/3) - INT(0) \n" ); document.write( "= 1/27 - 2/9 + 1/3 - 0 \n" ); document.write( "= 4/27 sq units \n" ); document.write( "-------------- \n" ); document.write( "The area from 1/3 to 1 has to be subtracted: \n" ); document.write( "Area = INT(1) - INT(1/3) \n" ); document.write( "= [1/27 - 2/9 + 1/3] - (1 - 2 + 1) \n" ); document.write( "= 4/27 \n" ); document.write( "====================== \n" ); document.write( "Total area = 1 sq unit \n" ); document.write( "================================================ \n" ); document.write( "I think the other tutor got the area for the parabola, the tangent and the x-axis. Not the y-axis. \n" ); document.write( " \n" ); document.write( " |