document.write( "Question 978038: Find the value of k for which a-3b is a factor of a⁴-7a²b²+kb⁴. Hence for
\n" );
document.write( "this value of k , factorise a⁴-7a²b²+kb⁴ completely. \n" );
document.write( "
Algebra.Com's Answer #599554 by Edwin McCravy(20060)![]() ![]() You can put this solution on YOUR website! Find the value of k for which a-3b is a factor of a⁴-7a²b²+kb⁴ . \n" ); document.write( "Hence for this value of k, factorise a⁴-7a²b²+kb⁴ completely. \n" ); document.write( " \r\n" ); document.write( "Divide by long division, inserting zero terms for missing terms +0a³b and\r\n" ); document.write( "+0ab³:\r\n" ); document.write( "\r\n" ); document.write( " a³ +3a²b +2ab²+ 6b³ \r\n" ); document.write( "a-3b)a⁴+0a³b-7a²b²+0ab³+ kb⁴\r\n" ); document.write( " a⁴-3a³b\r\n" ); document.write( " 3a³b-7a²b²\r\n" ); document.write( " 3a³b-9a²b²\r\n" ); document.write( " 2a²b²+0ab³\r\n" ); document.write( " 2a²b²-6ab³\r\n" ); document.write( " 6ab³+ kb⁴\r\n" ); document.write( " 6ab³-18b⁴\r\n" ); document.write( " kb⁴+18b⁴ <-- remainder\r\n" ); document.write( "\r\n" ); document.write( "The remainder must = 0 so that a-3b \r\n" ); document.write( "will be a factor of a⁴-7a²b²+kb⁴.\r\n" ); document.write( "\r\n" ); document.write( "kb⁴+18b⁴ = 0\r\n" ); document.write( "(k+18)b⁴ = 0\r\n" ); document.write( "k+18=0; b⁴=0\r\n" ); document.write( " k=-18; b=0 \r\n" ); document.write( "\r\n" ); document.write( "There is a trivial case for b=0 and k is any number, \r\n" ); document.write( "which we ignore.\r\n" ); document.write( "\r\n" ); document.write( "So k = -18\r\n" ); document.write( "\r\n" ); document.write( "a⁴-7a²b²-18b⁴\r\n" ); document.write( "\r\n" ); document.write( "(a²+2b²)(a²-9b²)\r\n" ); document.write( "\r\n" ); document.write( "(a²+2b²)(a-3b)(a+3b)\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |