document.write( "Question 978036: Question text
\n" );
document.write( "A wildlife biologist observes four brown bears as they attempt to catch salmon in a river in Alaska. Assume that each bear has a .7 probability of catching a fish and that the bears fishing attempts are independent. Let the random variable X be the number of bears that catch a fish. Create the probability distribution for X (rounding each to THREE decimal places).\r
\n" );
document.write( "\n" );
document.write( "What is the standard deviation of the above distribution? Round to three places.\r
\n" );
document.write( "\n" );
document.write( "Answer: \n" );
document.write( "
Algebra.Com's Answer #599529 by jim_thompson5910(35256)![]() ![]() ![]() You can put this solution on YOUR website! This is a binomial distribution problem\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use the formula \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "where n = 4, p = 0.7 and k ranges from k = 0 to k = 4\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's calculate the probabilities\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 0, the probability is... \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "(4 C 0)*(0.7)^(0)*(1-0.7)^(4-0) \n" ); document.write( "0.0081 \n" ); document.write( "0.008\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 1, the probability is... \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "(4 C 1)*(0.7)^(1)*(1-0.7)^(4-1) \n" ); document.write( "0.0756 \n" ); document.write( "0.076\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 2, the probability is... \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "(4 C 2)*(0.7)^(2)*(1-0.7)^(4-2) \n" ); document.write( "0.2646 \n" ); document.write( "0.265\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 3, the probability is... \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "(4 C 3)*(0.7)^(3)*(1-0.7)^(4-3) \n" ); document.write( "0.4116 \n" ); document.write( "0.412\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "when k = 4, the probability is... \n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k) \n" ); document.write( "(4 C 4)*(0.7)^(4)*(1-0.7)^(4-4) \n" ); document.write( "0.2401 \n" ); document.write( "0.240\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Let's wrap all this up into a neat distribution table\r \n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------\r \n" ); document.write( "\n" ); document.write( "The standard deviation is equal to \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The standard deviation is approximately 0.917 \n" ); document.write( " |