document.write( "Question 978036: Question text
\n" ); document.write( "A wildlife biologist observes four brown bears as they attempt to catch salmon in a river in Alaska. Assume that each bear has a .7 probability of catching a fish and that the bears fishing attempts are independent. Let the random variable X be the number of bears that catch a fish. Create the probability distribution for X (rounding each to THREE decimal places).\r
\n" ); document.write( "\n" ); document.write( "What is the standard deviation of the above distribution? Round to three places.\r
\n" ); document.write( "\n" ); document.write( "Answer:
\n" ); document.write( "

Algebra.Com's Answer #599529 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
This is a binomial distribution problem\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Use the formula
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "where n = 4, p = 0.7 and k ranges from k = 0 to k = 4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's calculate the probabilities\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when k = 0, the probability is...
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "(4 C 0)*(0.7)^(0)*(1-0.7)^(4-0)
\n" ); document.write( "0.0081
\n" ); document.write( "0.008\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when k = 1, the probability is...
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "(4 C 1)*(0.7)^(1)*(1-0.7)^(4-1)
\n" ); document.write( "0.0756
\n" ); document.write( "0.076\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when k = 2, the probability is...
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "(4 C 2)*(0.7)^(2)*(1-0.7)^(4-2)
\n" ); document.write( "0.2646
\n" ); document.write( "0.265\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when k = 3, the probability is...
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "(4 C 3)*(0.7)^(3)*(1-0.7)^(4-3)
\n" ); document.write( "0.4116
\n" ); document.write( "0.412\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "when k = 4, the probability is...
\n" ); document.write( "(n C k)*(p)^(k)*(1-p)^(n-k)
\n" ); document.write( "(4 C 4)*(0.7)^(4)*(1-0.7)^(4-4)
\n" ); document.write( "0.2401
\n" ); document.write( "0.240\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Let's wrap all this up into a neat distribution table\r
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "\n" ); document.write( "
kP(X = k)
00.008
10.076
20.265
30.412
40.240
\r
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------------\r
\n" ); document.write( "\n" ); document.write( "The standard deviation is equal to \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "\"sqrt%28n%2Ap%2A%281-p%29%29+=+sqrt%284%2A0.7%2A%281-0.7%29%29\"
\n" ); document.write( "\"sqrt%28n%2Ap%2A%281-p%29%29+=+0.91651513899117\"
\n" ); document.write( "\"sqrt%28n%2Ap%2A%281-p%29%29+=+0.917\"\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The standard deviation is approximately 0.917
\n" ); document.write( "
\n" );