document.write( "Question 977646: The quadratic function
\n" ); document.write( "R(p) = 70p − 5.2p2
\n" ); document.write( "
\n" ); document.write( "models the amount of revenue in dollars R(p), generated from a product priced at p dollars.
\n" ); document.write( "
\n" ); document.write( "Question: What price generates the maximum revenue?
\n" ); document.write( "

Algebra.Com's Answer #599210 by jim_thompson5910(35256)\"\" \"About 
You can put this solution on YOUR website!
R(p) = 70p - 5.2p^2\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "R ' (p) = 70 - 10.4p ... apply the derivative, set it equal to 0 and solve for p\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "0 = 70 - 10.4p\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "10.4p = 70\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p = 70/10.4\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p = 6.73076923076923\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "p = 6.73\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "The price $6.73 generates the max revenue.
\n" ); document.write( "
\n" );