What are all the rational zeros of the function?\r
\n" );
document.write( "\n" );
document.write( "f(x) = 2x^4 – 13x^3 + 12x^2 + 52x – 80\r\n" );
document.write( "It's in descending order, so look at the numbers on both ends,\r\n" );
document.write( "the 80 on the far right and the 2 on the far left. Ignore signs\r\n" );
document.write( "for now. \r\n" );
document.write( "\r\n" );
document.write( "All the factors of 80 are 1,2,4,5,8,10,16,20,40,80.\r\n" );
document.write( "\r\n" );
document.write( "All the factors of 2 are 1 and 2.\r\n" );
document.write( "\r\n" );
document.write( "Make all possible fractions with a numerator as a factor of 80 and\r\n" );
document.write( "a denominator as a factor of 2. Some of the fractions will reduce\r\n" );
document.write( "and become duplicates.\r\n" );
document.write( "\r\n" );
document.write( "
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
,
\r\n" );
document.write( "\r\n" );
document.write( "Then we reduce the ones that will reduce and toss out the duplicates:\r\n" );
document.write( "\r\n" );
document.write( "
,
,
,
,
,
,
,
,
,
,
,
,
\r\n" );
document.write( "\r\n" );
document.write( "Finally we put a before every one because they could be either positive or\r\n" );
document.write( "negative.\r\n" );
document.write( "\r\n" );
document.write( "
,
,
,
,
,
,
,
,
,
,
,
,
\r\n" );
document.write( "\r\n" );
document.write( "Now we have to use trial and error to find one of those, if there are any, that\r\n" );
document.write( "will prove to be a rational zero. We try 1, the easiest one:\r\n" );
document.write( "\r\n" );
document.write( "1 | 2 -13 12 52 -80\r\n" );
document.write( " | 2 -11 1 53 \r\n" );
document.write( " 2 -11 1 53 -27\r\n" );
document.write( "\r\n" );
document.write( "So 1 is not a zero, because we get -27 remainder instead of 0\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So we try the next easiest one, 2\r\n" );
document.write( "\r\n" );
document.write( "2 | 2 -13 12 52 -80\r\n" );
document.write( " | 4 -18 -12 80 \r\n" );
document.write( " 2 -9 -6 40 0\r\n" );
document.write( "\r\n" );
document.write( "So 2 is a zero, and now we have factored f(x) as\r\n" );
document.write( "\r\n" );
document.write( "f(x) = (x-2)(2x³-9x²-6x+40) \r\n" );
document.write( "\r\n" );
document.write( "Now we try the next easiest one, -1. But we don't try it in the original\r\n" );
document.write( "polynomial. Instead we try it in the cubic factor 2x³-9x²-6x+40 that we\r\n" );
document.write( "got from the synthetic division.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "-1 | 2 -9 -6 40\r\n" );
document.write( " | -2 11 -5 \r\n" );
document.write( " 2 -11 5 35\r\n" );
document.write( "\r\n" );
document.write( "So -1 is not a zero,\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now we try the next easiest one, -2\r\n" );
document.write( "\r\n" );
document.write( "-2 | 2 -9 -6 40\r\n" );
document.write( " | -4 26 -40 \r\n" );
document.write( " 2 -13 20 0\r\n" );
document.write( "\r\n" );
document.write( "So -2 is a zero, and now we have factored f(x) as\r\n" );
document.write( "\r\n" );
document.write( "f(x) = (x-2)(x+2)(2x²-13x+20) \r\n" );
document.write( "\r\n" );
document.write( "We can now use regular factor methods to factor 2x²-13x+20\r\n" );
document.write( "as (x-4)(x-5), and now we have factored the polynomial \r\n" );
document.write( "completely:\r\n" );
document.write( "\r\n" );
document.write( "f(x) = (x-2)(x+2)(x-4)(2x-5)\r\n" );
document.write( "\r\n" );
document.write( "The zeros all rational are found by setting each = 0 and solving.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "x-2=0; x+2=0; x-4=0; 2x-5=0\r\n" );
document.write( " x=2; x=-2; x=4 2x=5\r\n" );
document.write( " x=
\r\n" );
document.write( "\r\n" );
document.write( "Rational zeros: 2, -2, 4, and 5/2\r\n" );
document.write( "\r\n" );
document.write( "Edwin
\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "Edwin \n" );
document.write( "