document.write( "Question 976849: the sum of the length I and the width w of a rectangular region is 190 meters Find the dimensions that produce the greatest area \n" ); document.write( "
Algebra.Com's Answer #598545 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
\"L%2BW=190\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"A=L%2AW\"
\n" ); document.write( "From above,
\n" ); document.write( "\"L=190-W\"
\n" ); document.write( "\"A=%28190-W%29W\"
\n" ); document.write( "\"A=190W-W%5E2\"
\n" ); document.write( "To find the maximum value of a quadratic, convert to vertex form,
\n" ); document.write( "\"A=-%28W%5E2-190W%29\"
\n" ); document.write( "\"A=-%28W%5E2-190W%2B9025%29%2B9025\"
\n" ); document.write( "\"A=-%28W-95%29%5E2%2B9025\"
\n" ); document.write( "So the maximum area \"9025\"\"m%5E2\" occurs when \"W=95\"\"m\" so then
\n" ); document.write( "\"L=190-95\"
\n" ); document.write( "\"L=95\"\"m\"
\n" ); document.write( "
\n" ); document.write( "
\n" );