document.write( "Question 83306: find the equation of the parabola with its vertex at the point of orgin and the focal point F(0,2) \n" ); document.write( "
Algebra.Com's Answer #59801 by dolly(163)\"\" \"About 
You can put this solution on YOUR website!
Given the vertex is (0,0) and the focus is (0,2)\r
\n" ); document.write( "\n" ); document.write( "Now d = distance between the focus and the vertex\r
\n" ); document.write( "\n" ); document.write( " = sqrt (0^2 + 2^2)\r
\n" ); document.write( "\n" ); document.write( " = sqrt(4)\r
\n" ); document.write( "\n" ); document.write( " = 2\r
\n" ); document.write( "\n" ); document.write( "So a = 1/4d\r
\n" ); document.write( "\n" ); document.write( " = 1/8\r
\n" ); document.write( "\n" ); document.write( "Vertex (h.k) = (0,0)\r
\n" ); document.write( "\n" ); document.write( "So equation of the parabola is y = a(x-h)^2 + k\r
\n" ); document.write( "\n" ); document.write( " = 1/8 [x-0]^2 + 0\r
\n" ); document.write( "\n" ); document.write( " = 1/8 [x^2]\r
\n" ); document.write( "\n" ); document.write( "Thus the required equation is x^2 = 8y\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );