document.write( "Question 976034: The average number of phone calls/minute coming into a switch board between 2 p.m. and 4 p.m. is 2.5. Determine the probability that during one particular minute there will be
\n" );
document.write( "i. 4 or fewer
\n" );
document.write( "ii. more than 6 calls \n" );
document.write( "
Algebra.Com's Answer #597705 by rothauserc(4718) You can put this solution on YOUR website! We use the Poisson probability distribution to solve \n" ); document.write( "Probability(P)(X for given lamda) = e^(-lamda)*lamda^X / X! \n" ); document.write( "*********************************************************** \n" ); document.write( "lamda for the problem is 2.5 \n" ); document.write( "*********************************************************** \n" ); document.write( "i) P( X < or = 4 ) = P(0) + P(1) + P(2) + P(3) + P(4) \n" ); document.write( "P(0:2.5) = 0.082084999 \n" ); document.write( "P(1:2.5) = 0.205212497 \n" ); document.write( "P(2:2.5) = 0.256515621 \n" ); document.write( "P(3:2.5) = 0.213763017 \n" ); document.write( "P(4:2.5) = 0.133601886 \n" ); document.write( "P( X < or = 4 ) = 0.89117802 approx 0.89 or 89% \n" ); document.write( "ii) P ( X > 6 ) = 1 - P( X < or = 6 ) \n" ); document.write( "P(5:2.5) = 0.066800943 \n" ); document.write( "P(6:2.5) = 0.027833726 \n" ); document.write( "P ( X > 6 ) = 1 - 0.985812689 approx 0.01 or 1% \n" ); document.write( " \n" ); document.write( " |