document.write( "Question 976034: The average number of phone calls/minute coming into a switch board between 2 p.m. and 4 p.m. is 2.5. Determine the probability that during one particular minute there will be
\n" ); document.write( "i. 4 or fewer
\n" ); document.write( "ii. more than 6 calls
\n" ); document.write( "

Algebra.Com's Answer #597705 by rothauserc(4718)\"\" \"About 
You can put this solution on YOUR website!
We use the Poisson probability distribution to solve
\n" ); document.write( "Probability(P)(X for given lamda) = e^(-lamda)*lamda^X / X!
\n" ); document.write( "***********************************************************
\n" ); document.write( "lamda for the problem is 2.5
\n" ); document.write( "***********************************************************
\n" ); document.write( "i) P( X < or = 4 ) = P(0) + P(1) + P(2) + P(3) + P(4)
\n" ); document.write( "P(0:2.5) = 0.082084999
\n" ); document.write( "P(1:2.5) = 0.205212497
\n" ); document.write( "P(2:2.5) = 0.256515621
\n" ); document.write( "P(3:2.5) = 0.213763017
\n" ); document.write( "P(4:2.5) = 0.133601886
\n" ); document.write( "P( X < or = 4 ) = 0.89117802 approx 0.89 or 89%
\n" ); document.write( "ii) P ( X > 6 ) = 1 - P( X < or = 6 )
\n" ); document.write( "P(5:2.5) = 0.066800943
\n" ); document.write( "P(6:2.5) = 0.027833726
\n" ); document.write( "P ( X > 6 ) = 1 - 0.985812689 approx 0.01 or 1%
\n" ); document.write( "
\n" ); document.write( "
\n" );