document.write( "Question 974872: The value of xyz is 15/2 if a, x, y, z, b in AP.
\n" );
document.write( "While xyz is 18/5 if a, x, y, z, b in HP.
\n" );
document.write( "If a, b are +ve integers then find them. \n" );
document.write( "
Algebra.Com's Answer #596729 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! The value of xyz is 15/2 if a, x, y, z, b in AP. \n" ); document.write( "While xyz is 18/5 if a, x, y, z, b in HP. \n" ); document.write( "If a, b are +ve integers then find them. \n" ); document.write( " \r\n" ); document.write( "Let d be the common difference, then \r\n" ); document.write( "\r\n" ); document.write( "a=y-2d, x=y-d, y, z=y+d, b=y+2d\r\n" ); document.write( "\r\n" ); document.write( "xyz = (y-d)y(y+d) = 15/2\r\n" ); document.write( " y(y²-d²) = 15/2\r\n" ); document.write( " y³-d²y = 15/2\r\n" ); document.write( " 2y³-2d²y = 15\r\n" ); document.write( " 2y³-2d²y-15 = 0\r\n" ); document.write( "\r\n" ); document.write( "Since a and b are positive integers, a+b is a positive integer,\r\n" ); document.write( "therefore a+b = y-2d+y+2d = 2y is a positive integer.\r\n" ); document.write( "Let 2y = p, a positive integer. Substitute y = p/2\r\n" ); document.write( "\r\n" ); document.write( "2(p/2)³-2d²(p/2)-15 = 0\r\n" ); document.write( " 2p³/8-d²p-15 = 0\r\n" ); document.write( " p³/4-d²p-15 = 0\r\n" ); document.write( " p³-4d²p-60 = 0 \r\n" ); document.write( "\r\n" ); document.write( "Since p³ = 4d²p+60, p³ is a multiple of 4,\r\n" ); document.write( "so is p. 4 is the only multiple of 4 which is a factor\r\n" ); document.write( "of 60 and thus that can be a rational solutional to the cubic. \r\n" ); document.write( "\r\n" ); document.write( "We use synthetic division with p=4:\r\n" ); document.write( "\r\n" ); document.write( "4 | 1 0 -4d² -60\r\n" ); document.write( " | 4 16 64-16d²\r\n" ); document.write( " 1 4 16-4d² 4-16d²\r\n" ); document.write( "\r\n" ); document.write( "That is a solution if and only if 4-16d² = 0\r\n" ); document.write( " -16d² = -4\r\n" ); document.write( " d² = 1/4\r\n" ); document.write( " d = ±1/2\r\n" ); document.write( "\r\n" ); document.write( "So we have p = 4, d = ±1/2\r\n" ); document.write( "\r\n" ); document.write( "So y = p/2 = 4/2 = 2\r\n" ); document.write( "\r\n" ); document.write( "a=y-2d, x=y-d, y, z=y+d, b=y+2d\r\n" ); document.write( "\r\n" ); document.write( "Using d = 1/2\r\n" ); document.write( "a=2-2(1/2)=1, x=2-(1/2)=3/2, y=2, z=2+(1/2)=5/2, b=3\r\n" ); document.write( "\r\n" ); document.write( "So the positive integers are a=1 and b=3\r\n" ); document.write( "\r\n" ); document.write( "Using d = -1/2\r\n" ); document.write( "a=2-2(-1/2)=3, x=2-(-1/2)=5/2, y=2, z=2+(-1/2)=3/2, b=1\r\n" ); document.write( "\r\n" ); document.write( "So the positive integers are a=3 and b=1\r\n" ); document.write( "\r\n" ); document.write( "Either way the integers are 1 and 3.\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |