document.write( "Question 974211: Find a polynomial p of degree 3 such that −2, −1, and 4 are zeros of p and
\n" );
document.write( "p(1) = 2 \n" );
document.write( "
Algebra.Com's Answer #596175 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! a(x^3+x^2+x+d)=0\r \n" ); document.write( "\n" ); document.write( "factors are inverses of roots \n" ); document.write( "(x+2)(x+1)(x-4) \n" ); document.write( "Multiply them: \n" ); document.write( "first two are x^2+3x+2 \n" ); document.write( "multiply by (x-4) \n" ); document.write( "x^3-4x^2+3x^2-12x+2x-8 \n" ); document.write( "=x^3-x^2-10x-8, the general form of the polynomial\r \n" ); document.write( "\n" ); document.write( "a(x^3-x^2-10x-8)=2, when x=1\r \n" ); document.write( "\n" ); document.write( "a(1-1-10-8)=2 \n" ); document.write( "-18a=2 \n" ); document.write( "a=-1/9\r \n" ); document.write( "\n" ); document.write( "polynomial is (-1/9)(x^3-x^2-10x-8)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |