document.write( "Question 82930: Please, find the maximum extrema for f(x) = cos(x)(cos(x) + 1) using derivatives. \n" ); document.write( "
Algebra.Com's Answer #59515 by Nate(3500)![]() ![]() ![]() You can put this solution on YOUR website! f(x) = cos(x)(cos(x) + 1) \n" ); document.write( "f'(x) = (cos(x))'(cos(x) + 1) + (cos(x))(cos(x) + 1)' \n" ); document.write( "f'(x) = -sin(x)(cos(x) + 1) + cos(x)(-sin(x)) \n" ); document.write( "f'(x) = -sin(x)cos(x) - sin(x) - cos(x)sin(x) \n" ); document.write( "f'(x) = -sin(x)(2cos(x) + 1) \n" ); document.write( "Slope of tangent (defined by f'(x)) is zero at max and min values. \n" ); document.write( "0 = -sin(x)(2cos(x) + 1) \n" ); document.write( "sin(x) = 0 when x = 0, \n" ); document.write( "cos(x) = -1/2 when x = 2 \n" ); document.write( "No worries, functions of cosine and sine occillate here. \n" ); document.write( "f(x) = cos(x)^2 + cos(x) \n" ); document.write( "f(0) = 1^2 + 1 = 2 \n" ); document.write( "f( \n" ); document.write( "f(2 \n" ); document.write( "f(2 \n" ); document.write( "f(4 \n" ); document.write( "Maximum for f(x) is 2. \n" ); document.write( "~ Proof ~ \n" ); document.write( " |