document.write( "Question 82930: Please, find the maximum extrema for f(x) = cos(x)(cos(x) + 1) using derivatives. \n" ); document.write( "
Algebra.Com's Answer #59515 by Nate(3500)\"\" \"About 
You can put this solution on YOUR website!
f(x) = cos(x)(cos(x) + 1)
\n" ); document.write( "f'(x) = (cos(x))'(cos(x) + 1) + (cos(x))(cos(x) + 1)'
\n" ); document.write( "f'(x) = -sin(x)(cos(x) + 1) + cos(x)(-sin(x))
\n" ); document.write( "f'(x) = -sin(x)cos(x) - sin(x) - cos(x)sin(x)
\n" ); document.write( "f'(x) = -sin(x)(2cos(x) + 1)
\n" ); document.write( "Slope of tangent (defined by f'(x)) is zero at max and min values.
\n" ); document.write( "0 = -sin(x)(2cos(x) + 1)
\n" ); document.write( "sin(x) = 0 when x = 0, \"pi\", 2\"pi\", 3\"pi\" ...
\n" ); document.write( "cos(x) = -1/2 when x = 2\"pi\"/3, 4\"pi\"/3 ...
\n" ); document.write( "No worries, functions of cosine and sine occillate here.
\n" ); document.write( "f(x) = cos(x)^2 + cos(x)
\n" ); document.write( "f(0) = 1^2 + 1 = 2
\n" ); document.write( "f(\"pi\") = (-1)^2 - 1 = 0
\n" ); document.write( "f(2\"pi\") = 1^2 + 1 = 2
\n" ); document.write( "f(2\"pi\"/3) = (-0.5)^2 - 0.5 = -0.25
\n" ); document.write( "f(4\"pi\"/3) = (-0.5)^2 - 0.5 = -0.25
\n" ); document.write( "Maximum for f(x) is 2.
\n" ); document.write( "~ Proof ~
\n" ); document.write( "\"graph%28300%2C300%2C-6.3%2C6.3%2C-4%2C4%2Ccos%28x%29%5E2+%2B+cos%28x%29%2C2%29\"
\n" ); document.write( "
\n" );