document.write( "Question 971810: Use the graphical method to solve the following linear programming problem. Restrict x ≥ 0 and y ≥ 0.
\n" );
document.write( "SHOW ALL WORK
\n" );
document.write( "Maximize
\n" );
document.write( "f = 30x + 27y
\n" );
document.write( "Subject To:
\n" );
document.write( "30x + 10y ≤ 180
\n" );
document.write( "20x + 20y ≤ 200
\n" );
document.write( "x≥0, y≥0
\n" );
document.write( "a.) Graph the solution of the constraint system
\n" );
document.write( "b.) Find the corners of the resulting feasible region
\n" );
document.write( "c.) Evaluate the objective function at each corner
\n" );
document.write( "d.) Indicate the corner which provides the Maximum value for the objective function \n" );
document.write( "
Algebra.Com's Answer #594339 by Edwin McCravy(20056)![]() ![]() You can put this solution on YOUR website! Maximize \n" ); document.write( "f = 30x + 27y \n" ); document.write( "Subject To: \n" ); document.write( "30x + 10y ≤ 180 \n" ); document.write( "20x + 20y ≤ 200 \n" ); document.write( "x≥0, y≥0 \n" ); document.write( "a.) Graph the solution of the constraint system \n" ); document.write( " \r\n" ); document.write( "The boundary lines' equations:\r\n" ); document.write( "30x + 10y = 180 \r\n" ); document.write( "20x + 20y = 200\r\n" ); document.write( " x = 0 (the equation of the y-axis)\r\n" ); document.write( " y = 0 (the equation of the x-axis)\r\n" ); document.write( "\r\n" ); document.write( "These simplify to\r\n" ); document.write( "3x + y = 18 which has intercepts (0,18) and (6,0)\r\n" ); document.write( " x + y = 10 which has intercepts (0,10) and (10,0)\r\n" ); document.write( "\r\n" ); document.write( "We only need to draw the 1st quadrant since neither variable\r\n" ); document.write( "is negative, which is what x≥0, y≥0 tells us.\r\n" ); document.write( "\r\n" ); document.write( "We will also find the point where the slanted lines intersect\r\n" ); document.write( "by solving this system:\r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( "b.) Find the corners of the resulting feasible region \n" ); document.write( " \r\n" ); document.write( "Since the first two inequalities have ≤, the feasible region is the region\r\n" ); document.write( "below the two slanted lines, to the right of the y-axis and above the x-axis.\r\n" ); document.write( "Let's eliminate all of the graph except for the feasible region:\r\n" ); document.write( "\r\n" ); document.write( " \n" ); document.write( "c.) Evaluate the objective function at each corner \n" ); document.write( " \r\n" ); document.write( "Corner | \r\n" ); document.write( "point |f(x) = 30(x) + 27(y) = VALUE \r\n" ); document.write( "-----------------------------------------------\r\n" ); document.write( "(0,0) | 30(0) + 27(0) = 0 + 0 = 0 <---minimum value = 0\r\n" ); document.write( "(0,10) | 30(0) + 27(10) = 0 + 270 = 270\r\n" ); document.write( "(4,6) | 30(4) + 27(6) = 120 + 162 = 282 <---maximum value = 282\r\n" ); document.write( "(6,0) | 30(6) + 27(0) = 180 + 0 = 180\r\n" ); document.write( " \n" ); document.write( "d.) Indicate the corner which provides the Maximum value for the objective function. \n" ); document.write( " \r\n" ); document.write( "The maximum value is 282 which is reached at the corner point (4,6).\r\n" ); document.write( "\r\n" ); document.write( "Edwin\n" ); document.write( " |