document.write( "Question 970739: prove that if a series of numbers are in GP,their logarithms are in AP \n" ); document.write( "
Algebra.Com's Answer #593375 by Theo(13342)![]() ![]() You can put this solution on YOUR website! geometric progression is An = A1 * r^(n-1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "arithmetric progression is An = A1 + (n-1)*d\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "start with the geometric progression of An = A1 * r^(n-1)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "take the log of both sides of that equation to get:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log(An) = log(A1 * r^(n-1))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since log(a*b) = log(a) + log(b), this equation becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log(An) = log(A1) + log(r^(n-1))\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "since log(a^b) = b*log(a), this equation becomes:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log(An) = log(A1) + (n-1)*log(r)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "that's an arithmetic rogression with the common difference equal to log(r).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "we'll take an example:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A1 = 100 \n" ); document.write( "r = 1.5 \n" ); document.write( "n = 5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "geometric progression:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "An = A1 * (r^(n-1) which becomes: \n" ); document.write( "A5 = 100 * 1.5^4 which becomes: \n" ); document.write( "A5 = 506.25\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "now we want to find log(A5).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "if we are correct, then log(A5) should be equal to log(506.25).\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "start with:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log(A1) = log(100) \n" ); document.write( "r = 1.5 \n" ); document.write( "n = 5\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "use the arithmetic progression of:\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "log(A5) = log(A1) + (n-1)*log(r) which becomes: \n" ); document.write( "log(A5) = log(100) + 4*log(1.5) which becomes: \n" ); document.write( "log(A5) = log(100) + log(1.5^4) whcih becomes: \n" ); document.write( "log(A5) = log(100*1.5^4) which becomes: \n" ); document.write( "log(A5) = log(506.25)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A5 = 506.25 \n" ); document.write( "log(A5) = log(506.25)\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "looks like we're good.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |