document.write( "Question 969603: the area of an equilateral triangle is 108 square root of 3 feet squared what is the length of a side and the apothem in simplest radical form? \n" ); document.write( "
Algebra.Com's Answer #592431 by Boreal(15235)![]() ![]() You can put this solution on YOUR website! Side=12 sqrt (3) feet; ap=6 feet ANSWER\r \n" ); document.write( "\n" ); document.write( "A=1/2 * bh\r \n" ); document.write( "\n" ); document.write( "108 sqrt (3) sq ft=(1/2) bh\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Equilateral triangles with side s have an altitude of (s/2) sqrt (3). The altitude splits the base into 2, so the triangle formed with the altitude is a 30-60-90 triangle with the hypotenuse s, the altitude is (s/2)sqrt(3).\r \n" ); document.write( "\n" ); document.write( "Area is (1/2) *s *(s/2)*sqrt(3)=[(s^2)/4]sqrt (3)=108 sqrt (3)\r \n" ); document.write( "\n" ); document.write( "The sqrt(3) on both sides divide out, \r \n" ); document.write( "\n" ); document.write( "108=(s^2/4) \n" ); document.write( "Multiply by 4 \n" ); document.write( "432= s^2 \n" ); document.write( "s= sqrt (432) In simple radical form would be sqrt (144*3)=12 sqrt(3) feet\r \n" ); document.write( "\n" ); document.write( "The apothem is 1/3 the altitude. or (1/3)*(s/2)sqrt(3)=(s/6)sqrt(3)\r \n" ); document.write( "\n" ); document.write( "But s=12 sqrt (3) so (s/6) sqrt (3)=12/6 (sqrt 3)^2=2*3 =6 feet\r \n" ); document.write( "\n" ); document.write( "sqrt 3^2=3\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |