document.write( "Question 968481: Please help,\r
\n" );
document.write( "\n" );
document.write( "Consider the function f(x) = x2 − 1. Find the equation of the tangent to the graph of f(x) at x = 3. [NOTE: when calculating f′(3), use first principles.] \n" );
document.write( "
Algebra.Com's Answer #591814 by rothauserc(4718)![]() ![]() You can put this solution on YOUR website! I assume the function f(x) = x2 − 1 is really \n" ); document.write( "f(x) = x^2 - 1 \n" ); document.write( "we need the first derivative of this function to find the slope \n" ); document.write( "using first principles, \n" ); document.write( "f'(x) = lim h->0 (f(x+h) - f(x))/h \n" ); document.write( "now let us find f(x+h) \n" ); document.write( "f(x+h) = (x+h)^2 - 1 = x^2 + 2xh + h^2 - 1 \n" ); document.write( "f(x+h) - f(x) = x^2 + 2xh + h^2 - 1 -x^2 + 1 = 2xh + h^2 \n" ); document.write( "(f(x+h) - f(x))/h = 2x + h \n" ); document.write( "as h->0 we can drop the h and limit becomes 2x \n" ); document.write( "so f'(x) = 2x \n" ); document.write( "********************************************* \n" ); document.write( "therefore slope at x = 3 is \n" ); document.write( "f'(3) = 2*3 = 6 \n" ); document.write( "********************************************* \n" ); document.write( "using f(x) = x^2 - 1 to find y when x = 3 \n" ); document.write( "y = 3^2 -1 = 8 \n" ); document.write( "therefore our point is (3, 8), so far we have \n" ); document.write( "y = 6x + b \n" ); document.write( "now find b when x = 3 and y = 8 \n" ); document.write( "8 = 6*3 + b \n" ); document.write( "b = -10 \n" ); document.write( "and the equation of the line tangent to the function at x = 3 is \n" ); document.write( "y = 6x - 10\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |