document.write( "Question 968360: A central angle of 140º subtends an arc of length 10 feet on a circle. Find the radius of the circle\r
\n" );
document.write( "\n" );
document.write( "Please explain\r
\n" );
document.write( "\n" );
document.write( "Thank you \n" );
document.write( "
Algebra.Com's Answer #591745 by stanbon(75887)![]() ![]() ![]() You can put this solution on YOUR website! A central angle of 140º subtends an arc of length 10 feet on a circle. Find the radius of the circle \n" ); document.write( "-------- \n" ); document.write( "140 degrees = 140(pi/180) = (7/9)pi radians \n" ); document.write( "------ \n" ); document.write( "Equation: \n" ); document.write( "theta in radians = (arc length)/(radius) \n" ); document.write( "(7/9)pi = 10/radius \n" ); document.write( "--- \n" ); document.write( "radius = 10/[(7/9)pi] = 90/(7pi) is approximately 4.09 ft \n" ); document.write( "------------------- \n" ); document.write( "Another way to work it using proportions::\r \n" ); document.write( "\n" ); document.write( "circum/360 = arc/central angle \n" ); document.write( "cir/360 = 10/140 \n" ); document.write( "cir = 3600/140 = 25.71 \n" ); document.write( "--- \n" ); document.write( "2*pi*r = 25.71 \n" ); document.write( "radius = 25.71/(2*pi) = 4.09 ft. \n" ); document.write( "------ \n" ); document.write( "Cheers, \n" ); document.write( "Stan H. \n" ); document.write( "------------- \n" ); document.write( " |