document.write( "Question 968306: Find the coordinates of the center of a circle containing the points (0,0), (-2,4) and (4,-2) \n" ); document.write( "
Algebra.Com's Answer #591722 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! Find the coordinates of the center of a circle containing the points (0,0), (-2,4) and (4,-2) \n" ); document.write( "*** \n" ); document.write( "standard form of equation for a circle: (x-h)^2+(y-k)^2=r^2, (h,k)=coordinates of center, r=radius \n" ); document.write( ".. \n" ); document.write( "(0,0) (0-h)^2+(0-k)^2=r^2 \n" ); document.write( "h^2+k^2=r^2 \n" ); document.write( ".. \n" ); document.write( "(-2,4) (-2-h)^2+(4-k)^2=r^2 \n" ); document.write( "4+4h+h^2+16-8k+k^2=r^2 \n" ); document.write( "4+4h+h^2+16-8k+k^2=h^2+k^2 (sub (h^2+k^2) for r^2) \n" ); document.write( "4+4h+16-8k=0 \n" ); document.write( "4h-8k=-20 \n" ); document.write( ".. \n" ); document.write( "(4,-2) (4-h)^2+(-2-k)^2=r^2 \n" ); document.write( "16-8h+h^2+4+4k+k^2=r^2 \n" ); document.write( "16-8h+h^2+4+4k+k^2=h^2+k^2 (sub (h^2+k^2) for r^2) \n" ); document.write( "16-8h+4+4k=0 \n" ); document.write( "-8h+4k=-20 \n" ); document.write( ".. \n" ); document.write( "4h-8k=-20 \n" ); document.write( "-8h+4k=-20 \n" ); document.write( ".. \n" ); document.write( "8h-16k=-40(mult. eq. by 2) \n" ); document.write( "-8h+4k=-20 \n" ); document.write( "add: \n" ); document.write( "-12k=-60 \n" ); document.write( "k=5 \n" ); document.write( ".. \n" ); document.write( "4h=-20+8k=-20+40 \n" ); document.write( "4h=20 \n" ); document.write( "h=5 \n" ); document.write( "r^2=h^2+k^2=25+25=50 \n" ); document.write( ".. \n" ); document.write( "equation: (x-5)^2+(y-5)^2=50 \n" ); document.write( "center:(5, 5) \n" ); document.write( " |