document.write( "Question 967923: The equation of a parabola is given.
\n" ); document.write( "a. Write the equation of the parabola in standard form.
\n" ); document.write( "b. Identify the vertex, focus, and directrix.
\n" ); document.write( "Express numbers in exact simplest form.
\n" ); document.write( " 16y^2-56y-16x+17=0
\n" ); document.write( "

Algebra.Com's Answer #591591 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
The equation of a parabola is given.
\n" ); document.write( "a. Write the equation of the parabola in standard form.
\n" ); document.write( "b. Identify the vertex, focus, and directrix.
\n" ); document.write( "Express numbers in exact simplest form.
\n" ); document.write( "16y^2-56y-16x+17=0
\n" ); document.write( "16(y^2-(56/16)y)-16x+17=0
\n" ); document.write( "16(y^2-(7/2)y+49/16)-49-16x+17=0
\n" ); document.write( "16(y-7/4)^2-16x-32=0
\n" ); document.write( "16(y-7/4)^2-16(x+2)=0
\n" ); document.write( "16(y-7/4)^2=16(x+2)
\n" ); document.write( "divide both sides by 16
\n" ); document.write( "(y-7/4)^2=(x+2)
\n" ); document.write( "this is an equation of a parabola that opens rightward
\n" ); document.write( "Its basic form: (y-k)^2=4p(x-h), (h,k)=coordinates of the vertex
\n" ); document.write( "vertex: (-2, 7/4)
\n" ); document.write( "axis of symmetry: y=7/4
\n" ); document.write( "p=1
\n" ); document.write( "focus: (-1, 7/4) (p-distance to the right of vertex on the axis of symmetry)
\n" ); document.write( "directrix: x=-3 (p-distance to the left of vertex on the axis of symmetry)
\n" ); document.write( "vertex form of equation for given parabola: x=(y-7/4)^2-2
\n" ); document.write( "
\n" );