document.write( "Question 967753: I need to use the Gaussian elimination method on the following:
\n" ); document.write( "
\n" ); document.write( "For a circuit, the currents i1, i2, and i3 measured in amperes, are determined by the following linear equations:
\n" ); document.write( "-i1 + 4i3 = 3
\n" ); document.write( "5i1 - 3i2 = 26
\n" ); document.write( "-3i1 +6i2 = -21\r
\n" ); document.write( "\n" ); document.write( "Any help would be very helpful.\r
\n" ); document.write( "\n" ); document.write( "Thanks in advance
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #591483 by ikleyn(52898)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "Let's introduce new variables  x = i1,  y=i2  and  z=i3  for brevity.
\n" ); document.write( "Then you need to solve the system of three linear equations in three unknowns\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-x   +         4z = 3,
\n" ); document.write( "5x   - 3y         = 26,
\n" ); document.write( "-3x + 6y         = -21\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "by the Gauss's elimination method.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Notice that your system just contains the sub-system of two linear equations in two unknowns  x  and  y.  It is the system consisting of the second and the third equations. \r
\n" ); document.write( "\n" ); document.write( "Its facilitates the solution. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "So,  we need to solve this sub-system,  which is \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "5x   - 3y = 26,
\n" ); document.write( "-3x + 6y = -21.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply the first equation of these two by  2  and add to the second equation to eliminate  y.  You will get\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "    10x   - 6y = 52,
\n" ); document.write( "+
\n" ); document.write( "     -3x + 6y = -21.
\n" ); document.write( " --------------------
\n" ); document.write( "      7x          = 31.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "It gives you the solution for  x:  x = \"31%2F7\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Next, substitute it to any of the second or the third equation of the original system.  It gives you the solution for  y. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then substitute the found values of  x  and  y  into the first equation,  and you will get the solution for  z. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Good luck.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "-------------------------------------------------------------------------
\n" ); document.write( "Comment from student: Hi ikleyn, thanks for the response. How would I solve this question using an augmented matrix and using gaus elimination? Thanks again for the help.
\n" ); document.write( "-------------------------------------------------------------------------\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "OK, let's do this. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Your augmented matrix is \r
\n" ); document.write( "\n" ); document.write( "\"%28matrix%283%2C+4%2C+-1%2C+0%2C+4%2C+3%2C+5%2C+-3%2C+0%2C+26%2C+-3%2C+6%2C+0%2C+-21%29%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Multiply the first row by  5  and add to the second row to eliminate  x  in the second equation.  You will get\r
\n" ); document.write( "\n" ); document.write( "\"%28matrix%283%2C+4%2C+-1%2C+0%2C+4%2C+3%2C+0%2C+-3%2C+20%2C+145%2C+-3%2C+6%2C+0%2C+-21%29%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Next,  multiply the first row by  -3  and add to the third row to eliminate  x  in the third equation.  You will get\r
\n" ); document.write( "\n" ); document.write( ".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "OK,  we just made the zeroes in the first column below  \"-1\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now,  multiply the second row of the last matrix by  2  and add to the third row to eliminate  y  in the third equation.  You will get\r
\n" ); document.write( "\n" ); document.write( "\"%28matrix%283%2C+4%2C+-1%2C+0%2C+4%2C+3%2C+0%2C+-3%2C+20%2C+145%2C+0%2C+0%2C+28%2C+260%29%29\".\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Thus you just completed the elimination process:  you transformed your original matrix to the upper triangle matrix. \r
\n" ); document.write( "\n" ); document.write( "Hence,  the solution for  z  is  z = \"260%2F28\" = \"65%2F7\" = \"9\"\"2%2F7\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Now you should make back-substitution.\r
\n" ); document.write( "\n" ); document.write( "Substitute the found value of  \"z\" = \"65%2F7\"  into the equation \r
\n" ); document.write( "\n" ); document.write( "-3y + 20z = 145   (in accordance with the second row of the last matrix).  It will give you the solution for  \"y\". \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "Then back-substitute the found values of  \"y\"  and  z  into the very first equation and find  x. \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );