document.write( "Question 965826: Find the area of quadrilateral ABCD whose sides are 9m 40m 28m 15m and angle ABC=90° \n" ); document.write( "
Algebra.Com's Answer #590320 by Alan3354(69443)\"\" \"About 
You can put this solution on YOUR website!
Find the area of quadrilateral ABCD whose sides are 9m 40m 28m 15m and angle ABC=90°
\n" ); document.write( "-------------
\n" ); document.write( "Assuming AB = 9 and BC = 40:
\n" ); document.write( "Put A at the Origin, B at (0,9), C at (40,9)
\n" ); document.write( "Point D is the intersection of 2 circles, one centered at A with r = 15 and one centered at C with r = 28.
\n" ); document.write( "--> x^2 + y^2 = 225 and
\n" ); document.write( "(x-40)^2 + (y-9)^2 = 784
\n" ); document.write( "Find the intersection of the 2 circles:
\n" ); document.write( "x^2 + y^2 = 225
\n" ); document.write( "x^2 + y^2 - 80x - 18y = -897
\n" ); document.write( "------------------------------------- subtract
\n" ); document.write( "80x + 18y = 1122 is the equation of the line passing thru the 2 intersections of the circles.
\n" ); document.write( "--> y = (561 - 40x)/9
\n" ); document.write( "x^2 + y^2 = 225
\n" ); document.write( "Sub for y
\n" ); document.write( "x^2 + ((561 - 40x)/9)^2 = 225
\n" ); document.write( "81x^2 + (561 - 40x)^2 = 225*81 = 18225
\n" ); document.write( "81x^2 + 1600x^2 - 44880x + 314721 = 18225
\n" ); document.write( "1681x^2 - 44880x + 296496 = 0
\n" ); document.write( "\n" ); document.write( "\n" ); document.write( " \n" ); document.write( "\n" ); document.write( "
Solved by pluggable solver: SOLVE quadratic equation (work shown, graph etc)
Quadratic equation \"ax%5E2%2Bbx%2Bc=0\" (in our case \"1681x%5E2%2B-44880x%2B296496+=+0\") has the following solutons:
\n" ); document.write( "
\n" ); document.write( " \"x%5B12%5D+=+%28b%2B-sqrt%28+b%5E2-4ac+%29%29%2F2%5Ca\"
\n" ); document.write( "
\n" ); document.write( " For these solutions to exist, the discriminant \"b%5E2-4ac\" should not be a negative number.
\n" ); document.write( "
\n" ); document.write( " First, we need to compute the discriminant \"b%5E2-4ac\": \"b%5E2-4ac=%28-44880%29%5E2-4%2A1681%2A296496=20575296\".
\n" ); document.write( "
\n" ); document.write( " Discriminant d=20575296 is greater than zero. That means that there are two solutions: \"+x%5B12%5D+=+%28--44880%2B-sqrt%28+20575296+%29%29%2F2%5Ca\".
\n" ); document.write( "
\n" ); document.write( " \"x%5B1%5D+=+%28-%28-44880%29%2Bsqrt%28+20575296+%29%29%2F2%5C1681+=+14.6983938132064\"
\n" ); document.write( " \"x%5B2%5D+=+%28-%28-44880%29-sqrt%28+20575296+%29%29%2F2%5C1681+=+12\"
\n" ); document.write( "
\n" ); document.write( " Quadratic expression \"1681x%5E2%2B-44880x%2B296496\" can be factored:
\n" ); document.write( " \"1681x%5E2%2B-44880x%2B296496+=+%28x-14.6983938132064%29%2A%28x-12%29\"
\n" ); document.write( " Again, the answer is: 14.6983938132064, 12.\n" ); document.write( "Here's your graph:
\n" ); document.write( "\"graph%28+500%2C+500%2C+-10%2C+10%2C+-20%2C+20%2C+1681%2Ax%5E2%2B-44880%2Ax%2B296496+%29\"

\n" ); document.write( "\n" ); document.write( "==============
\n" ); document.write( "x = 14.6984
\n" ); document.write( "--> y = -2.9929
\n" ); document.write( "D is (14.6984,-2.9929)
\n" ); document.write( "======================
\n" ); document.write( "Write the points in order. I'll use (14.7,-3) for D
\n" ); document.write( "A...B...C...D....A
\n" ); document.write( "0...0..40..14.7..0
\n" ); document.write( "0...9...9..-3....0
\n" ); document.write( "Add the diagonal products starting at the upper left.
\n" ); document.write( "0+0-120+0 = 120
\n" ); document.write( "Add the diagonal products starting at the lower left.
\n" ); document.write( "0+360+132.3+0 = 492.3
\n" ); document.write( "------------
\n" ); document.write( "Find the difference = 492.3 - 120 = 372.3
\n" ); document.write( "The area is 1/2 that
\n" ); document.write( "Area = 186.15 sq units
\n" ); document.write( "
\n" ); document.write( "
\n" );