document.write( "Question 82318: the tens digit of a two digit is three more than the units digit if the digits are revered the new number is 54 less than the original number. find the original number \n" ); document.write( "
Algebra.Com's Answer #58967 by checkley75(3666)\"\" \"About 
You can put this solution on YOUR website!
x=y+3
\n" ); document.write( "10x+y=10y+x+54 now substitute (y+3) for x & solve for y.
\n" ); document.write( "10(y+3)+y=10y+(y+3)+54
\n" ); document.write( "10y+30+y=10y+y+3+54
\n" ); document.write( "11y-11y=57-30
\n" ); document.write( "0=27 this would indicate that every set of numbers results in a difference of not 54 but 27. Thus:
\n" ); document.write( "96
\n" ); document.write( "-69
\n" ); document.write( "---
\n" ); document.write( "27 \r
\n" ); document.write( "\n" ); document.write( "85
\n" ); document.write( "-58
\n" ); document.write( "----
\n" ); document.write( "27\r
\n" ); document.write( "\n" ); document.write( "74
\n" ); document.write( "-47
\n" ); document.write( "---------
\n" ); document.write( "27
\n" ); document.write( "&\r
\n" ); document.write( "\n" ); document.write( "30
\n" ); document.write( "-03
\n" ); document.write( "---------
\n" ); document.write( "27
\n" ); document.write( "
\n" ); document.write( "
\n" );