document.write( "Question 959837: Suppose sin(u)= -2/9 and tan(u)<0\r
\n" );
document.write( "\n" );
document.write( "a. locate the terminal point P_u for u on the unit circle and find its coordinates
\n" );
document.write( "b. Find the exact value of each of the following:\r
\n" );
document.write( "\n" );
document.write( "i. cos(74π-u)
\n" );
document.write( "ii. tan(u+3π/2)
\n" );
document.write( "iii. csc(-u)\r
\n" );
document.write( "\n" );
document.write( "Thank you \n" );
document.write( "
Algebra.Com's Answer #586770 by lwsshak3(11628) ![]() You can put this solution on YOUR website! Suppose sin(u)= -2/9 and tan(u)<0 \n" ); document.write( "reference angle (u) is in quadrant IV \n" ); document.write( "adjacent side of reference right triangle in quadrant IV=√(9^2)-(2^2)=√(81-4)=√77 \n" ); document.write( "cos(u)=√77/9 \n" ); document.write( "tan(u)=sin(u)/cos(u)=-2/√77 \n" ); document.write( "a. locate the terminal point P_u for u on the unit circle and find its coordinates \n" ); document.write( "terminal point P on the unit circle =(√77/9,-2/9) \n" ); document.write( "b. Find the exact value of each of the following: \n" ); document.write( "i. cos(74π-u)=cos(74π)*cos(u)+sin(74π)*sin(u)=1*√77/9+0*-2/9=√77/9 \n" ); document.write( "ii. tan(u+3π/2)=(tan(u)+tan(3π/2))/(1-tan(u)*tan(3π/2))=-2/√77+u.d./1-2/√77*u.d.=undefined \n" ); document.write( "iii. csc(-u) =1/sin(-u)=1/-sin(u)=9/2 \n" ); document.write( " |