document.write( "Question 953374: Let P= (x,y) be a point on the graph on y=sqrt(x) or y=x^1/2 (not sure how to express the square root of x here)\r
\n" ); document.write( "\n" ); document.write( "a). Express the distance d from P to the point (1,0) as a function of x.\r
\n" ); document.write( "\n" ); document.write( "b). graph in your calculator to find the value(s) of x where d is the smallest.
\n" ); document.write( "

Algebra.Com's Answer #582181 by Fombitz(32388)\"\" \"About 
You can put this solution on YOUR website!
Either way is correct.
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "\"y=sqrt%28x%29\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Using the distance formula,
\n" ); document.write( "\"d%5E2=%28x-1%29%5E2%2B%28y-0%29%5E2\"
\n" ); document.write( "\"d%5E2=%28x-1%29%5E2%2By%5E2\"
\n" ); document.write( "\"d%5E2=%28x-1%29%5E2%2Bx\"
\n" ); document.write( "\"d%5E2=x%5E2-2x%2B1%2Bx\"
\n" ); document.write( "\"d%5E2=x%5E2-x%2B1\"
\n" ); document.write( "\"d=sqrt%28x%5E2-x%2B1%29\"
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( ".
\n" ); document.write( "Algebraically, the function is minimized when the argument value is minimized.
\n" ); document.write( "\"y=x%5E2-x%2B1\"
\n" ); document.write( "\"y=x%5E2-x%2B1%2F4%2B1-1%2F4\"
\n" ); document.write( "\"y=%28x-1%2F2%29%5E2%2B3%2F4\"
\n" ); document.write( "Since it's in vertex form, the value is the minimum and occurs at \"x=1%2F2\"
\n" ); document.write( "\"y=3%2F4\"
\n" ); document.write( "\"d%5Bmin%5D=sqrt%283%2F4%29\"
\n" ); document.write( "\"d%5Bmin%5D=sqrt%283%29%2F2\"\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );