document.write( "Question 949635: find the coordinates of the vertex, focus, and endpoints of the latus rectum. also find the equation of the directrix of 4x^2-16x-15y+1=0. \n" ); document.write( "
Algebra.Com's Answer #579780 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
find the coordinates of the vertex, focus, and endpoints of the latus rectum. also find the equation of the directrix of 4x^2-16x-15y+1=0.
\n" ); document.write( "***
\n" ); document.write( "basic form of equation for parabola that opens upward: (x-h)^2=4p(y-k), (h,k)=coordinates of the vertex.
\n" ); document.write( "complete the square:
\n" ); document.write( "4(x^2-4x+4)-16-15y+1=0
\n" ); document.write( "4(x-2)^2=15y+15
\n" ); document.write( "4(x-2)^2=15(y+1)
\n" ); document.write( "(x-2)^2=(15/4)(y+1)
\n" ); document.write( "vertex: (2,-1)
\n" ); document.write( "axis of symmetry: x=2
\n" ); document.write( "4p=15/4
\n" ); document.write( "p=15/16
\n" ); document.write( "focus: (2,-1/16) (p-distance above vertex on the axis of symmetry)
\n" ); document.write( "directrix :y=31/16 (p-distance below vertex on the axis of symmetry)
\n" ); document.write( "endpoints of latus rectum:
\n" ); document.write( "(x-2)^2=(15/4)(y+1)
\n" ); document.write( "y=-1/16
\n" ); document.write( "(x-2)^2=(15/4)(-1/16+1)
\n" ); document.write( "(x-2)^2=(15/4)(15/16)
\n" ); document.write( "(x-2)^2=(15^2/64)
\n" ); document.write( "take sqrt of both sides
\n" ); document.write( "x-2=±15/8
\n" ); document.write( "x=2±15/8=16/8±15/8=1/8, 31/8
\n" ); document.write( "endpoints of latus rectum: (1/8,-1/16) and (31/8, -1/16)
\n" ); document.write( "
\n" ); document.write( "
\n" );