document.write( "Question 949635: find the coordinates of the vertex, focus, and endpoints of the latus rectum. also find the equation of the directrix of 4x^2-16x-15y+1=0. \n" ); document.write( "
Algebra.Com's Answer #579780 by lwsshak3(11628)![]() ![]() ![]() You can put this solution on YOUR website! find the coordinates of the vertex, focus, and endpoints of the latus rectum. also find the equation of the directrix of 4x^2-16x-15y+1=0. \n" ); document.write( "*** \n" ); document.write( "basic form of equation for parabola that opens upward: (x-h)^2=4p(y-k), (h,k)=coordinates of the vertex. \n" ); document.write( "complete the square: \n" ); document.write( "4(x^2-4x+4)-16-15y+1=0 \n" ); document.write( "4(x-2)^2=15y+15 \n" ); document.write( "4(x-2)^2=15(y+1) \n" ); document.write( "(x-2)^2=(15/4)(y+1) \n" ); document.write( "vertex: (2,-1) \n" ); document.write( "axis of symmetry: x=2 \n" ); document.write( "4p=15/4 \n" ); document.write( "p=15/16 \n" ); document.write( "focus: (2,-1/16) (p-distance above vertex on the axis of symmetry) \n" ); document.write( "directrix :y=31/16 (p-distance below vertex on the axis of symmetry) \n" ); document.write( "endpoints of latus rectum: \n" ); document.write( "(x-2)^2=(15/4)(y+1) \n" ); document.write( "y=-1/16 \n" ); document.write( "(x-2)^2=(15/4)(-1/16+1) \n" ); document.write( "(x-2)^2=(15/4)(15/16) \n" ); document.write( "(x-2)^2=(15^2/64) \n" ); document.write( "take sqrt of both sides \n" ); document.write( "x-2=±15/8 \n" ); document.write( "x=2±15/8=16/8±15/8=1/8, 31/8 \n" ); document.write( "endpoints of latus rectum: (1/8,-1/16) and (31/8, -1/16) \n" ); document.write( " \n" ); document.write( " |