document.write( "Question 949013: Identify the center, vertices, co-vertices, foci, length of the major axis, length of the minor axis, and eccentricity of:
\n" ); document.write( "X squared + 9y squared + 8x + 108y +331= 0
\n" ); document.write( "

Algebra.Com's Answer #579298 by lwsshak3(11628)\"\" \"About 
You can put this solution on YOUR website!
Identify the center, vertices, co-vertices, foci, length of the major axis, length of the minor axis, and eccentricity of:
\n" ); document.write( "X squared + 9y squared + 8x + 108y +331= 0
\n" ); document.write( "***
\n" ); document.write( "x^2+9y^2+8x+108y+331=0
\n" ); document.write( "x^2+8x+9y^2+108y=-331
\n" ); document.write( "complete the square:
\n" ); document.write( "(x^2+8x+16)+9(y^2+12y+36)=-331+16+324
\n" ); document.write( "(x+4)^2+9(y+6)^2=9
\n" ); document.write( "\"%28x%2B4%29%5E2%2F9%2B%28y%2B6%29%5E2=1\"
\n" ); document.write( "This is an equation of an ellipse with horizontal major axis
\n" ); document.write( "Its standard form of equation:\"+%28x-h%29%5E2%2Fa%5E2%2B%28y-k%29%5E2%2Fb%5E2=1\", a>b, (h,k)=coordinates of center
\n" ); document.write( "center: (-4,-6)
\n" ); document.write( "a^2=9
\n" ); document.write( "a=√9=3
\n" ); document.write( "length of major axis=2a=6
\n" ); document.write( "b^2=1
\n" ); document.write( "b=1
\n" ); document.write( "length of minor axis=2b=2
\n" ); document.write( "vertices: (-4±a,-6)=(-4±3,-6)=(-7,-6) and (-1,-6)
\n" ); document.write( "co-vertices: (-4-6±b)=(-4,-6±1)=(-4,-7) and (-4,-5)
\n" ); document.write( "..
\n" ); document.write( "c^2=a^2-b^2=9-1=8
\n" ); document.write( "c=√8≈2.8
\n" ); document.write( "foci: (-4±c,-6)=(-4±2.8,-6)=(-6.8,-6) and (-1.2,-6)
\n" ); document.write( "eccentricity=c/a=√8/3≈0.94
\n" ); document.write( "see graph below:
\n" ); document.write( "
\n" ); document.write( "
\n" );